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The Accelerator is a tool for fast reproducible data processing, capable of working at

high speed with terabytes of data with billions of rows on a single computer. The speed
in combination with its unique capabilites to ensure reproducibility makes the Accelerator
a good choice for tasks where it is important to keep track of how data and results are
connected. Typical applications include all kinds of data analysis work as well as live pro-
duction systems for tasks such as recommender systems, and more. The Accelerator has a
small footprint, few dependencies, and runs on laptops as well as rack servers.

The Accelerator was first used in 2012, and has been continuously developed and im-
proved since. It has been in use in projects for companies like Safeway, Starbucks, eBay,
Ericsson, and Vodafone. Most project have been related to data analysis, some to optimi-
sation, and some projects have been recommendation systems running live for years. The
Accelerator has been the core of these projects. In 2016, the Accelerator was acquired by
Ebay, who contributed it to the open source community early 2018.

Data set sizes in these projects range from a few hundred lines up to several tens of
billions rows and many columns. The number of items in a dataset used in a live system
was well above 1011, and this was handled with ease on a single 32 core computer.

The authors are Anders Berkeman, Carl Drougge, and Sofia Hörberg. More than 1600
commits have been removed to clean up the open version of the code base, and about
1000 new commits have been created since the Accelerator was open sourced. Extensive
testing has been done by Stefan Håkonsson. The Accelerator is written in Python, with the
exception of some critical parts that are written in the C programming language.

1.1 Main Design Goals
The Accelerator is designed to process log-files in “CSV”-like formats1. Log files bring de-
terminism (i.e. reproducibility) and transparency, and most data can be represented in this
format. The Accelerator is developed bottom up for high performance and simplicity, and
the main design goals are:

Parallel processing should be made simple. Modern computers come with several
cores, it should be straightforward to make use of them.

Data rates should be as fast as possible, i.e. close to the hardware bounds. It should
be possible to process large datasets, even on commodity hardware.

Any processing step should be reproducible. The Accelerator maps any output result
to its corresponding input data and processing source code.

Never recompute old results, always “recycle” old jobs, when possible. Also, sharing
results between multiple users should be effortless.

Organise and keep track of all jobs, files, and results in order to work with projects
having 100.000s of input files and lots of programs and scripts processing them.

In addition, the Accelerator is originally designed to be used at all levels of a project,
including data analysis, algorithm development, as well as production. Nevertheless, it still
excels as a pure data analysis or data processing tool.

1CSV is short for Comma Separated Values, but any separator character can be used. CSV files store data
into rows and columns of text. Classical “databases” could be generated from, and dumped to, CSV-files.
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This chapter presents an overview of the Accelerator’s features in a rather non-formal

way. It is based on an article published on the eBay Tech Blog website.

2.1 High Level View
The Accelerator is a client-server based application, and from a high level, it can be visualised
like in figure 2.1.

workdirs

job logs
ax <command>
commands for running
scripts and viewing results

server

Server SideClient Side

web browser

Figure 2.1: High level view of the Accelerator framework. See text for details.

In the figure, the client side, with shell commands and web interface, is on the left,
and the server side, with job databases is to the right. The Accelerator executes build
scripts, that issue jobs on the server. These jobs are stored in the server’s job databases
for later retreival. There are two databases, one for storing everything related to a job’s
execution, called the workdir, and one transaction log used for storing meta-information
about built jobs. The workdir will contain all inputs, source code, parameters, and outputs
of all executed jobs, whereas the job log database ensures reproducibility and transparency,
and it will be further discussed in chapter 7.

2.2 Interacting with the Accelerator
There are two ways to interface the Accelerator, using

the command line, and

using a web brower.

The command line interface is based on the ax shell command. It can be used for a large
variety of operations, including starting execution of scripts, listing data in datasets, showing
content of databases, and more.

The web interface, called Accelerator Board, is used to inspect jobs, datasets, and more.
Resulting files sucn as images, text files, pdfs, video files and so on are rendered in the web
browser.

2.3 Jobs
The basic operation of the Accelerator is to execute small Python programs called methods.
A method is nothing but a Python program with one or a few special functions that are used
to execute code sequentially or in parallel and to pass parameters and results. A method
that has completed execution is called a job.

Jobs are stored in job directories. A dedicated directory in the workdir will be created
for each new job, and this directory will contain all information regarding the job, such as
its input parameters, stored files, return values, profiling information, Python interpreter
version and path, and more.

The Accelerator has a database that keeps track of all jobs that has been run. This avoids
unnecessary re-computing in favour of re-using previously computed results. Re-using jobs
does not only speed up processing and encourage incremental design, but also makes it
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transparent which code and which data that was used for any particular result, minimising
these kind of uncertainties to zero.

2.3.1 A Very Simple Job: “Hello, World”
Here’s an example of a very simple method. It does not take any input parameters and does
almost nothing, it will just return the string “hello world” and exit.

def synthesis():
return "hello world"

Everything inside the synthesis()-function is run once without any parallelisation. In
order to get this method to execute, it is called from a build script looking something like
this

def main(urd)
job = urd.build('hello_world')
print(job.load())

The urd object made available by the main()-function contains functions for job building
and organisation, and is described in chapter 7 and section C.7. This build script is then
run by a shell command like this

ax run

The build()-call will instruct the server to execute the hello_world method. During its
execution, a job directory will be created that contains everyting associated with the build
process. When the build()-call is completed, a job object, of type Job, is returned to the
program. This object provides a convenient interface to the data in the corresponding job
directory, and contains member functions such as .load(), that is used in the example to
read back the returned value from the job.

2.3.2 Jobs Can Only be Run Once
If the build script is executed again, the hello_world job will not be re-built, simply be-
cause the Accelerator remembers that the job has been built in the past, and its associated
information is stored in a job directory. Instead, the Accelerator immediately returns a job
object representing the previous run. This means that from a user’s perspective, there is
no visible difference between running a job for the first time or re-using results from an
existing run! In order to have the method executing again, either the source code or input
parameters has to change. If there are changes, the method will be re-executed, and a new
job will be created that reflects these changes.

2.3.3 Back to the “Hello, World” Example
Figure 2.2 illustrates the dispatch of the hello_world method. The created job gets the
jobid test-0, and parts of the corresponding job directory information is shown in green.
(Jobids are job identifiers, that are named by their corresponding workdir plus an integer
counter value.) The job directory contains several files, of which the most important are

setup.json, containing job meta information;

result.pickle, containing the returned data; and

method.tar.gz, containing the method’s source code.

The Job object provides a convenient way to access files and data stored in this directory.
For example, as we’ve already seen, the job’s return value can be loaded into a variable using
the .load() function.
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2.3.4 Workdirs and Sharing Jobs
Workdirs are used to store jobs. There can be more than one workdir, and different workdirs
can be used separate jobs into different physical locations. The Accelerator can be set up
to have any number of workdirs associated, but only one is used for writing.

If the same workdir is entered into two or more different user’s configuration files, the
workdir and its contents will be shared between the users. Each Accelerator server will
update its knowledge about the contents of all workdirs before executing a build script, to
make sure that the latest jobs are taken into account. In addition, the job log database, as
described in chapter 7, is designed for efficient re-use and sharing of particularly interesting
jobs.

2.3.5 Linking Jobs
Using jobs, complex tasks can be split into several smaller operations. Jobs can be connected
so that the next job will depend on the result of a previous job or set of jobs, and so on.

To continue the simple hello world example, assume for a second that the hello_world-
job is computationally expensive, and that it returns a result that is to be used as input to
further processing. To keep things simple, this further processing is represented by printing
the result to standard output. A new method print_result is created, and it goes like
this
jobs = ('hello_world_job',)

def synthesis():
data = jobs.hello_world_job.load()
print(data)

This method expects the hello_world_job input parameter to be provided at execution
time, and it is accomplished by the following extended build script

def main(urd):
job1 = urd.build('hello_world')
job2 = urd.build('print_result', hello_world_job=job1)

The print_resultmethod then loads the result from the provided job and prints its contents
to stdout. Note that this method does not return anything.

Figure 2.3 illustrates the situation. (Note the direction of the arrow: the second job,
test-1 has test-0 as input parameter, but test-0 does not know of any jobs run in the
future. Hence, arrows point to previous jobs.)

The example shows how a complex task may be split into several jobs, each reading
intermediate results from previous jobs. The Accelerator will keep track of all job depen-
dencies, so there is no doubt which jobs that are run when and on which data. Furthermore,
since the Accelerator remembers if a job has been executed before, it will link and re-use
previous jobs when possible. This may bring a significant improvement in execution speed.
Furthermore, a re-used job is a proof of that the code, input- and output data is unchanged
and connected.

2.4 Datasets: Storing Data
The dataset is the Accelerator’s default storage type for small or large quantities of data,
designed for parallel processing and high performance. Datasets are built on top of jobs, so

result.pickle
setup.json

test-0/
test-0

workdirs/test/

...
methods.tar.gz

hello_world

Figure 2.2: A simple hello world program, represented as graph and work directory.
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datasets are created by methods and stored in job directories, just like any job result.

Internally, data in a dataset is stored in a row-column format, and is typically sliced into
a fixed number of slices to allow efficient parallel access, see figure 2.4. Columns are accessed
independently, so there is no overhead in reading a single or a set of columns. Only the data
relevant for a task is read from disk.

Furthermore, datasets may be hash partitioned, so that slice-membership is based on the
hash value of a given column. Partitioning base on, for example, a column containing some
ID string will puy all rows corresponding to any particular ID in a single slice only. In many
practical applications, hash partitioning makes parallel processes independent, minimising
the need for complicated merging operations. This is explained further in section 5.2.

2.4.1 Importing Data
A project typically starts with importing some data from a file on disk. The bundled method
csvimport is designed to parse a plethora of “comma separated values”-file formats and store
the data as a dataset. See figure 2.5. The method takes several input options in addition to
the mandatory filename to control the import process. Here is an example invocation

def main(urd):
jid = urd.build('csvimport', filename='file0.txt')

When executed, the created dataset will be stored in the resulting job directory, and the
name of the dataset will by default be the jobid plus the string default. For example, if
the csvimport jobid is imp-0, the dataset will be referenced by imp-0/default. In this
case, and always when there is no ambiguity, the jobid alone (imp-0) could be used too, for
simplicity. In general, a job could contain any number of datasets, but a single dataset is a
common case.

2.4.2 Linking Datasets, Chaining
Just like jobs can be linked to each other, datasets can link to each other too. Since datasets
are build on top of jobs, this is straightforward. Assume the file file0.txt is imported into
dataset imp-0/default, and that there is more data like it stored in the file file1.txt.
The second file is imported with a link to the first dataset, see figure 2.6. The imp-1 (or
imp-1/default) dataset reference can now be used to access all data imported from both
files!

Linking datasets containing related content is called chaining, and this is particularly
convenient when dealing with data that grows over time. A good example is any kind of log
data, such as logs of transactions, user interactions, and similar. Using chaining, datasets
can be with more rows just by linking, which is a lightweight constant time operation.

2.4.3 Adding New Columns to a Dataset
In the previous section it was shown that datasets can be chained and thereby grow in
number of rows. A dataset chain is created simply by linking one dataset to the other, so
the overhead is minimal. In this section it is shown that by the same principles, it is equally
simple to add new columns to existing datasets. Adding columns is a common operation
and the Accelerator handles this situation efficiently using links.

test-0

test-1 setup.json

result.pickle
...

setup.json

...

test-0/

test-1/

workdirs/test/

hello_world

print_result

Figure 2.3: Job test-0, is used as input to the print_result job.
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A5 B5 C5...
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...

input︷ ︸︸ ︷ slice0︷ ︸︸ ︷ slice1︷ ︸︸ ︷
...

...
...

...

Figure 2.4: A dataset containing three columns, A, B, and C stored using two slices. Each
dotted box corresponds to a file, so there are two files for each column, allowing for parallel
read of the data using two processes.

The idea is very simple. Assume a “source” dataset to which one or more new columns
should be added. A new dataset is created containing only the new column(s), and while
creating it, the constructor is instructed to link all the source dataset’s columns to the new
dataset such that the new dataset appears to contain all columns from both datasets. (Note
that this linking is similar to but different from chaining.)

Accessing the new dataset will transparently access all the columns in both the new
and the source dataset in parallel, making it indistinguishable from a single dataset. See
Figure 2.7.

A common case is to compute new columns based on existing ones. In this case, values are
written to the new columns in the new dataset while reading from the iterator iterating over
the existing columns in the source dataset. This will be discussed in detail in section 5.10

2.4.4 Multiple Datasets in a Job
Typically, a method creates a single dataset in the job directory, but there is no limit to
how many datasets that could be created and stored in a single job directory. This leads to
some interesting applications.

One application for keeping multiple datasets in a job is when data is split into subsets
based on some condition. This could, for example, be when a dataset is split into a training
set and a test set. One way to achieve this using the Accelerator is by creating a Boolean
column that tells if the current row is train or test data, followed by a job that splits the
dataset in two based on the value on that column. See Figure 2.8.

In the setup of figure 2.8 we have full tracking from either train or test datasets. If we
want to know the source of one of these sets, we just follow the links back to the previous
jobs until we reach the source job. In the figure, job-0 may for example be a csvimport
job, and will therefore contain the name of the input file in its parameters. Thus, it is
straightforward to link any data to its source.

Splitting a dataset into parts creates “physical” isolation while still keeping all the data
at the same place. No data is lost in the process, and this is good for transparency reasons.
For example, a following method may iterate over both datasets in job-1 and by that read
the complete dataset.

2.4.5 Parallel Dataset Access and Hash Partitioning
As shown earlier in this chapter, data in datasets is stored in multiple files for two reasons.
The first reason is that we can read only the columns that we need, without overhead, and
the second reason is that it allows fast parallel reads. The parameter slices determines
how many slices that the dataset should be partitioned into, and it also sets the number of

defaultfile0.txt
imp-0

csvimport

Figure 2.5: Importing file0.txt.
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default

default

imp-1

file0.txt

file1.txt

imp-0
csvimport

csvimport

Figure 2.6: Chaining the import of file1.txt to the previous import of file0.txt.

parallel process that is used for processing the dataset. There is always one process for each
slice of the dataset, and each process operates on a unique part of the dataset.

Datasets can be partitioned, or sliced, in different ways. One obvious way is to use round
robin, where each consecutive data row is written to the next slice, modulo the number of
slices. This leads to “well balanced” datasets with approximately equal number of rows
per slice. Another alternative to slicing is to slice based on the hash value of a particular
column’s values. Using this method, all rows with the same value in the hash column end up
in the same slice. This is efficient for many parallel processing tasks, and will be described
in detail later on.

2.4.6 Dataset Column Types
There are large a number of useful types available for dataset columns. They include floating
and integer point numbers, Booleans, timestamps, several string types (handling all kinds
of string encodings), and json as well as pickle types for storing arbitrary data collections.
Most of these types come with advanced parsers, making importing data from text files
straightforward with deterministic handling of errors, overflows, and so on.

2.4.7 Dataset Attributes
The dataset has a number of attributes associated with it, such as shape, number of rows,
column names and types, and more. An attribute is accessed like this

datasets = ('source',)
def synthesis():

print(datasets.source.shape)
print(datasets.source.columns)

and so on.

2.5 Iterators: Working with Data
Data in a dataset is typically accessed using an iterator that reads and streams one dataset
slice at a time to a CPU core. The parallel processing capabilities of the Accelerator makes
it possible to dispatch a set of parallel iterators, one for each slice, in order to have efficient
parallel processing of the whole dataset.

one new column

source dataset

extended dataset

link to
old columns

Figure 2.7: Adding one new column to the source dataset.
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train test

default

doing some operation on the train dataset

some interesting input dataset

filtered into two new datasets

job-2

job-1

job-0

Figure 2.8: job-1 separates the dataset job-0/default into two new datasets, named
job-1/train and job-1/test.

This section shows how iterators are used for reading data, how to take advantage of
slicing to have parallel processing, and how to efficiently create new datasets.

2.5.1 Iterator Basics
Basic iterator functionality is introduced here using an example. Assume a dataset that has
a column containing movie titles named movie, and the problem is to extract the ten most
frequently occuring movies. Here’s a complete method solving this problem

from collections import Counter
datasets = ('source',)

def synthesis():
c = Counter(datasets.source.iterate(None, 'movie'))
top10 = c.most_common(10)
print(top10)
return top10

This will print the ten most common movie titles and their corresponding counts in the
source dataset. The code will run on a single CPU core, because we use the single-process
synthesis() function, which is called and executed only once. The dataset.iterate()
(class-)method therefore has to read through all slices, one at a time, in a serial fashion, and
this is reflected by the first argument to the iterator being None. The method also returns
the variable top10 so that it can be used by other methods.

2.5.2 Parallel Execution
It is easy to write parallel programs using the Accelerator. The fact that data in a dataset
is sliced into disjoint sets and files makes parallel processing of data straightforward. Here’s
a slightly modified version of the program from the previous section that will now execute
in parallel

def analysis(sliceno):
return Counter(datasets.source.iterate(sliceno, 'movie'))

def synthesis(analysis_res)
c = analysis_res.merge_auto()
top10 = c.most_common(10)
return top10

For larger datasets, this parallel version of the movie title counter will run much faster. Here,
.iterate() is moved inside the analysis() function. This function is forked once for each
slice, and the argument sliceno will contain an integer between zero and the number of
slices minus one. The returned value from the analysis functions will be available as input
to the synthesis function in the analysis_res Python iterable. It is possible to merge the
results explicitly, but the this iterable comes with a rather magic method merge_auto(),
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that merges the results from all slices into one based on the data type. It can for example
merge Counters, sets, and composed types like sets of Counters, and so on.

2.5.3 Iterating over Several Columns
Since each column is stored independently in a dataset, there is no overhead from reading a
subset of a dataset’s columns. In the previous section we’ve seen how to iterate over a single
column using .iterate(). Iterating over more columns is straightforward by feeding a list
of column names to .iterate(), like in this example

from collections import defaultdict
datasets = ('source',)

def analysis(sliceno):
user2movieset = defaultdict(set)
for user, movie in datasets.source.iterate(sliceno, ('user', 'movie')):

user2movieset[user].add(movie)
return user2movieset

This example creates a lookup dictionary from users to sets of movies. Note that in this case,
we would like to have the dataset hashed on the user column, so that each user appears in
exactly one slice. This will make later merging (if necessary) much easier.

It is also possible to iterate over all columns by specifying an empty list of columns or
by using the value None.
...
def analysis(sliceno):

for columns in datasets.source.iterate(sliceno, None):
...

Here, columns will be a list of values, one for each column in the dataset, in sorted column
name order.

2.5.4 Iterating over Dataset Chains
The iterate function is used to iterate over a single dataset. There is a corresponding
function, iterate_chain, that is used for iterating over chains of datasets. This function
takes a number of arguments, such as

length, i.e. the number of datasets to iterate over. By default, it will iterate over all
datasets in the chain.

callbacks, functions that can be called before and/or after each dataset in a chain.
Very useful for aggregating data between datasets.

stop_id which stops iterating at a certain dataset. This dataset could be from another
job’s parameters, so we can for example iterate exactly over all new datasets not
covered by a previous job.

range, which allows for iterating over a range of data.

The range options is based on the max/min values stored for each column in the dataset.
Assuming that the chain is sorted, one can for example set

range={'timestamp': ('2016-01-01', '2016-01-31')}

in order to get rows within the specified range only. Using range= is quite costly, since it
requires each row in the dataset chain with dates within the range to be checked against the
range criterion. Therefore, there is a sloppy version that iterates over complete datasets
in the chain that contains at least one row with a date within the range. This runs at full
speed, and is useful, for example, to very quickly produce histograms or plots of subsets of
a huge dataset.
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synthesis(analysis_res, prepare_res)

analysis(sliceno, prepare_res)

prepare()

Figure 2.9: Execution flow and result propagation in a method.

2.5.5 Job Execution Flow and Result Passing
Execution of code in a method is either parallel or serial depending on which function is used
to encapsulate it. There are three functions in a method that are called from the Accelerator
when a method is running, and they are prepare(), analysis(), and synthesis(). All
three may exist in the same method, and at least one is required. When the method executes,
they are called one after the other.

prepare() is executed first. The returned value is available in the variable prepare_res.

analysis() is run in parallel processes, one for each slice. It is called after completion
of, and actually forked from prepare(). Common input parameters are sliceno,
holding the number of the current process instance, and prepare_res. The return
value for each process becomes available in the analysis_res variable.

synthesis() is called after the last analysis()-process is completed. It is typically
used to aggregate parallel results created by analysis() and takes both prepare_res
and analysis_res as optional parameters. The latter is an iterator of the results from
the parallel processes.

Figure 2.9 shows the execution order from top to bottom, and the data passed between
functions in coloured branches. prepare() is executed first, and its return value is available
to both the analysis() and synthesis() functions. There are slices (a configurable
parameter) number of parallel analysis() processes, and their output is available to the
synthesis() function, which is executed last.

Return values from any of the three functions may be stored in the job’s directory making
them available to other jobs.

job

options

datasets

jobs

method

Figure 2.10: Execution flow of a method. The method takes optionally three kinds of
parameters: options, jobs, and datasets.
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2.5.6 Job Parameters
We’ve seen how completed jobs can be used as input to new jobs. Jobs are one of three
kinds of input parameters that a job can take. Here the input parameters are summarised:

jobs, a set, or list, of identifiers to previously executed jobs;

options, a dictionary of options; and

datasets, a set, or list, of input datasets.

See Figure 2.10. Parameters are entered as global variables early in the method’s source.

2.6 A Class Based Programming Model
The Accelerator is based on an class based paradigm. Access the the Accelerator’s build in
functions and parameters are typically done through a few objects that are populated by
the running Accelerator.
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Chapter 3

Basic Build Scripting
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Build scripts are used to execute jobs and control the job flow on the Accelerator. This

chapter describes the basics of job building. More advanced features, using the Urd server,
are presented in chapter 7.

3.1 Build Scripts
Build scripts are stored in method directories. The default build script is named “build.py”,
all other build scripts have to start with the string “build_”. Build scripts are executed using
the run command. For example,

ax run example

will look for a file named build_example.py and execute it, while the command

ax run

by itself will execute the default build script. (The run command is described in section 9.4.)
The run command will load the build script and execute its main() function. This

function takes a mandatory argument named urd, so a basic build script looks like this

def main(urd):
# do something here...

The run command inserts an object of the Urd class as the argument to the main() function.
This urd object has a number of member functions and attributes useful for job building
and tracking of old jobs. The Urd class is described in chapter 7 and in section C.7.

3.1.1 Building a Job: urd.build()

The .build() function is used to build a job from a method (i.e. source file). For example,
the most simple build script that executes a method, here called method1, is

def main(urd):
urd.build('method1')

Common options for the build function are as follows

job = urd.build(method,
options={}, datasets={}, jobs={},
name='', caption='', workdir=None, **kw)

In practive, only a few parameters are given at a time, and the only mandatory argument
is the method. Any arguments to a job build can be added as simple keyword arguments
(key=value), and the build process will automatically assign them by name to the corre-
sponding options, datasets, or jobs parameter sets, assuming the naming is unique. If
the key name is not unique, the argument has to be specified explicitly. Examples will be
present in the following sections.

When the job is completed, Urd will record it using the name of the method as key,
unless the name= is specified. The name parameter is particularly useful to tell jobs apart
that are based on the same method. A common case would be the csvimport method, for
example. It is also possible to assign a caption to a job, but this has no functional benefits.

When the job has been successfully built, the build function will return a reference of
type Job. The Job class contains member functions and attributes that can be used to
extract information, such as generated files or text written to stdout, from the job. The
Job class is described in detail in chapter 4 and in section C.1.

Similarly, if the job to be built already exists in a configured workdir, the build function
will immediately return a Job object corresponding to the existing job without executing
anything.
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3.1.2 Connecting Jobs
Jobs may be connected, or linked, together so that a new job may use the output generated
by previous jobs. In this way, jobs could share and re-use previous results, and complicated
tasks can be broken down into several smaller jobs. A link is created by feeding the job
object from an existing job into the .build()-call of a new job, like in this example

def main(urd):
job_import = urd.build('csvimport', filename='inputfile.txt')
job_process = urd.build('process', source=job_import)

In the example above, the first job, csvimport, imports the file “inputfile.txt”. The
second job, process, takes the imported dataset as input for further processing.

3.1.3 Replaying Build Scripts
When the example build script from the previous section is run, both the csvimport and
the process jobs will be built. But what happens if the same build script is run a second
time? Remember now that the Accelerator stores all jobs in associated workdir(s). If there
has been no changes to the code since the last run, the Accelerator will immediately find the
job reference to the csvimport without needing to execute it again. The reference will be
input to the .build() call of the second method, and since the Accelerator has seen this call
before too, it will immediately look up the reference to this job as well, instead of executing
it. A second run of the build script will only take a fraction of a second to execute, but it
will still return all job references.

On the other hand, if something has been modified, such as a method’s source code or
any of the input parameters, the affected job(s) will be re-executed. For example, assume
that the csvimport build call is modified to import “anotherfile.txt” instead. This will
cause the csvimport method to be executed again, leading to a new job with a new jobid.
This job reference is input to the process job, causing it to be re-executed too. Here, both
jobs were re-executed, since they both were affected by the modification, but in general,
only those jobs affected by the modification will be re-executed!

A successful “replay” of a build script ensures the integrity and dependencies of all in-
volved calculations. If there are no changes, the same result remains. If, however, some
of the code has been modified, the Accelerator will compute new jobs to reflect the new
situation. The result may be different, and the user is notified.

3.2 Working with Build History: urd.joblist

Information about previously executed jobs is stored in the urd.joblist variable. This
variable is of type JobList, which is basically a standard ordered Python list with some
additional features for searching, profiling and pretty-printing. The JobList class is further
explained in section C.3.

3.2.1 Printing a JobList: urd.joblist.pretty

Create a JobList and pretty-print it

def main(urd):
job1 = urd.build('first')
job2 = urd.build('second', first=job1)
print(urd.joblist.pretty)

which results in
JobList(

[ 0] first : TEST-38
[ 1] second : TEST-39

)

(The actual jobids will most likely be different.) The name in the joblist is either the
name of the method, or, if present, the name given explicitly using the urd.build(name=)
option.
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3.2.2 Finding Jobs in a Joblist
There are several ways to extract jobs or list of jobs from a joblist.

Using find to Extract Jobs to a New Joblist

The find() function finds matching jobs and returns them in a new JobList. For exam-
ple,

jl = urd.joblist.find('csvimport')

will create a JobList of all csvimport jobs in urd.joblist.

Using get to Potentially Extract a Single Job

The get function will return a job reference to the most recent matching job. For exam-
ple,

job = urd.joblist.get('csvimport')

If no matching job is found, get will return None.

Using Square Brackets to Extract a Singe Job

Accessing jobs directly with a key like this

job = urd.joblist['csvimport']

is similar to get, but will return an error if a matching job is not found.

3.2.3 Indexing and Slicing a JobList

Since the JobList class is an extension of the (list) class, it is possible to do some list-like
operations on joblist objects.

A common special case is to provide an integer to the .get() function. This will cause a
lookup of the item with the corresponding index in the list. It is often used like this

latest_job = urd.joblist.get(-1)

as a way to return the last item in the joblist, should it exist, or None.
It is also possible to index and slice like in the following examples

joblst = jl[3]

or

joblst = jl[-2:]

3.3 Configuration Information: urd.info

The dictionary urd.info contains configuration information from the Accelerator server. In
particular, it contains at least these fields

name description

slices Configured number of slices.
urd An URL to the Urd server.
result_directory see section B.4.
input_directory see section B.4.
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3.4 Summary
In a build script, the urd object has functionality for building and retrieving jobs. A job is
built using urd.build(), and references to all built jobs are stored in urd.joblist. These
references could be fed as input parameters to new jobs so that the output from one job
could be used as input by another. The urd.joblist variable is basically of type list, but
with extra functionality to conveniently find already existing jobs.
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Chapter 4

Jobs

27



DRAFT
4.1 Definitions

4.1.1 Methods and Jobs
In general, doing a computation on a computer follows the following equation

source code + input data and parameters + execution time → result

In the Accelerator context, the notation is as follows

method + input data + input parameters + execution time → job

where the method is the source code, and the job is a directory containing

– any number of output files created by the running method, as well as

– a number of job meta information files containing all information that was needed to
run the job in the first place.

The exact contents of the job directory will be discussed in section 4.1.3, but note here that
the directory contains everything needed to run a specific piece of code with inputs and
source code, as well as any output generated during execution.

Computing a job is denoted job building. Jobs are built from methods. When a job has
been built, it is static, and cannot be altered or removed by the Accelerator. Jobs are built
either by

– a build script, see chapter 7, or

– by a method, using subjobs, see section 4.9

The following figure illustrates how a job example-1 is built from the method a_method.py.
The job is stored in the example work directory. The job identifier (in this case example-1)
is always unique so that it can be used as a reference to that particular job.

example/

a_method.py build setup.json
result.txt

example-0/

example-1/
...

...

Figure 4.1: When a method is built, a job directory is created in the target work directory,
containing files with all data an meta information regarding the job.

4.1.2 Jobids
A jobid is a string that can be used as a reference to a job. This unique string is created
by appending an incrementing integer to the name of the work directory in which the job is
stored. In the example above, the job is uniquely identified by the string example-0.

4.1.3 Work Directories and Job Directories
A successfully build of a method results in a new job directory on disk. The job directory
will be stored in the current workdir (i.e. work directory) and have a structure as follows,
assuming the current workdir is test, and the current jobid is test-0.

workdirs/test/
test-0/

setup.json
method.tar.gz
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result.pickle
post.json
OUTPUT/
datasets.txt
default/

The following table shows examples of files commonly found in a job directory.

name description

setup.json Contains information about the job build, including
name of method, input parameters, and, after exe-
cution, some profiling information.

post.json Contains profiling information, and is written only if
the job builds successfully.

method.tar.gz All source files, i.e. the method’s source and any
depend_extras are stored in this gziped tar-archive.

result.pickle The return value from synthesis() stored in the
Python “pickle” format.

default/ If the job contains datasets, these will be stored in
directories, such as for example default/, in the root
of the job directory.

datasets.txt List of all datasets in job in a human readable format.
OUTPUT/ Any output to stdout and stderr will be stored in

the OUTPUT/ directory.

4.1.4 The Job and CurrentJob Convenience Wrappers
In order to simplify access to job directory data, common job data operations are made
available by the Job class. There is also an extended version of this, called the CurrentJob
class, that also contains information and helper functions to a running job. See section C.1
for details about these classes.

4.2 Python Packages
Methods are stored in standard Python packages, i.e. in directories that are

– reachable by the Python interpreter, and

– contain the (perhaps empty) file “__init__.py”.

In addition, for the Accelerator to accept a package, the following constraints need to be
satisfied

– the package must contain a file named methods.conf, and

– the package must be added to the Accelerator’s configuration file under the key “method
packages”, see section B.4.

4.2.1 Creating a new Package
The following shell commands illustrate how to create a new package directory

% mkdir <dirname>
% touch <dirname>/__init__.py
% touch <dirname>/methods.conf

The first two lines create a Python package, and the third line adds the file methods.conf,
which is required by the Accelerator.

For security reasons, the Accelerator only looks for packages explicitly specified in the
configuration file using the “method packages” assignment. See chapter B.4 for detailed
information about the configuration file.

29



DRAFT
4.3 Method Source Files
Method source files are stored in Python packages as described in the previous section. The
Accelerator searches all reachable packages for methods to execute, and therefore method
names need to be globally unique! In order to reduce risk of executing the wrong file, there
are three limitations that apply to methods:

1. For a method file to be accepted by the Accelerator, the filename has to start with the
prefix “a_”;

2. the method name, without this prefix, must be present on a separate line in the
methods.conf file for the package, see section 4.3.2; and

3. the method name must be globally unique, i.e. there can not be a method with the
same name in any other method directory visible to the Accelerator.

4.3.1 Creating a New Method
In order to create a new method, follow these steps

1. Create the method in a package visible to the Accelerator using an editor. Make sure
the filename is a_name.py if the method’s name is name.

2. Add the method name name (without the prefix “a_” and suffix “.py”) to the methods.conf
file in the same method directory as where the source file is stored. See section 4.3.2.

3. (Remember to make sure that the method directory is in the Accelerator’s configura-
tion file.)

4.3.2 Making Methods Executable: methods.conf

The file methods.conf provides an easy way to specify and limit which methods (source
files) that can be executed, and optionally, which Python interpreter that should be used
for each of them. Methods not specified in methods.conf cannot be executed. (This is
something that makes a lot of sense in any production environment where control of what
is executable is key.)

The methods.conf is a plain text file with one entry per line. Any characters from a
hash sign (“#”) to the end of the line is considered to be a comment. It is permitted to
have any number of empty lines in the file. Available methods are entered first on a line by
stating the name of the method, without the a_ prefix and .py suffix.

The method name can optionally be followed by one or more whitespaces and a name
specifying the actual Python interpreter that will be used to execute the method. This is par-
ticularly useful to have individual methods run from individual virtual environments. Thus,
each method can run from its own virtual environment, with its own dependencies. A list of
valid Python interpreters is defined in the configuration file using the key “interpreters”,
see section B.4.

The default interpreter is selected if the second field is left empty, where default corre-
sponds to the one that the currently running Accelerator server is using. The Accelerator
and its standard_methods library are compatible with both Python 2 and Python 3.

Here is an example methods.conf

# this is a comment
test2 # will use default Python
test3 py3 # py3 as specified in accelerator.conf
testx tf # a Tensorflow virtual env defined in accelerator.conf
#bogusmethod py3

This file declares three methods corresponding to the files a_test2.py, a_test3.py, and
a_testx.py. These are the only methods that can be built in this method package. Note
that some methods are using virtual environments specified in the Accelerator’s configuration
file.
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4.4 Job Building or Job Recycling
Since the Accelerator keeps track of a job’s dependencies and results, it can in an instant
determine if a job to be built has been built before. If the job has been built before, the
Accelerator will immediately return a job instance to the existing job. Otherwise, the job
will first be built, and then a job instance will be returned.

4.4.1 Job Already Built Check
As shown in chapter 3, jobs are built using the .build() function, like this

def main(urd):
urd.build('themethod', parameter1=..., ...)

Prior to building a method, the Accelerator checks if an equivalent job has been built in
the past. This check is based on two things:

1. the output of a hash function applied to the method source code, and

2. the method’s input parameters.

The hash value is combined with the input parameters and compared to all jobs already
built. Only if the hash and input parameter combination is unique, i.e. it has not been seen
before, will the method be executed. The .build()-function returns an instance of type
Job. To the caller, it is not apparent if the job was just built or if it was built at an earlier
time.

4.4.2 Depend on More Files: depend_extra

A method may import code located in other files, and such files can be included in the build
check hash calculation as well. This will ensure that a change to an imported file will indeed
force a re-execution of the method if a build is requested. Additional files are specified in
the method using the depend_extra list, as for example:

from . import my_python_module

depend_extra = (my_python_module, 'mystuff.data',)

As seen in the example, it is possible to specify either Python module objects or filenames
relative to the method’s location.

If the Accelerator suspects that a depend_extra-statement is missing, it will suggest
adding it by printing a message in the output log like this:

=================================================================
WARNING: dev.a_test should probably depend_extra on myfuncs
=================================================================

The point of this is to make the user aware that the method depends on additional files that
are currently not taken into account in the build check hashing. The warning is removed by
putting the myfuncs file in a depend_extra list of the test method.

4.4.3 Avoiding Rebuild: equivalent_hashes

A change to a method’s source code will cause a new job to be built upon running .build(),
but sometimes it is desirable to modify the source code without causing a re-build. This
happens, for example, when new functionality is added to an existing method, and re-
computing all jobs is not an option. If functionality remains the same, existing jobs strictly
do not need to be re-built. For this situation, there is an equivalent_hashes dictionary
that can be used to manually specify which versions of the source code that are equivalent.
The Accelerator helps creating this dictionary, if needed. This is how it works.

1. Find the hash <old_hash> of the existing job in that job’s setup.json.

2. Add the following line to the updated method’s source code
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equivalent_hashes = {'whatever': (<old_hash>,)}

3. Run the build script. The server will print something like

===========================================================
WARNING: test_methods.a_test_rechain has equivalent_hashes,
but missing verifier <current_hash>
===========================================================

4. Copy <current_hash> into the equivalent_hashes:

equivalent_hashes = {<current_hash>: (<old_hash>,)}

This line now tells that current_hash is equivalent to old_hash, so if a job with the old
hash exists, the method will not be built again. Note that the right part of the assignment is
actually a list, so there could be any number of equivalent versions of the source code. From
time to time, this has been used during development of the Accelerator’s standard_methods,
when new features have been added that do not interfere with existing use.

4.5 Method Execution
Methods are executed using the build() call, either from a build script, or from another
method as a subjob. Methods typically takes input parameters, and they may generate
return values and produce output files as well as output to stdout and stderr.

4.5.1 Input Parameters
There are three kinds of method input parameters assigned by the build() call: jobs,
datasets, and options. These parameters are stated early in the method source code and
are global, meaning that they do not need to be included as parameters to the functions in
a method. Here is an example parameter set

jobs = ('accumulated_costs',)
datasets = ('transaction_log', 'access_log',)
options = dict(length=4)

The input parameters are populated by the builder when the run command is executed.
Section 4.8 and 4.10 provide detailed descriptions of all parameters.

4.5.2 Functions Reserved for Execution Flow
During execution, methods are not run from top to bottom. Instead, there are three reserved
functions that are called by the method dispatcher controlling the execution flow. These
functions are

prepare(),

analysis(), and

synthesis().

4.5.3 Execution Order
The three functions prepare(), analysis(), and synthesis() are called one at a time
in that order. prepare() and synthesis() execute as single processes, while analysis()
provides parallel execution. None of them is mandatory, but at least one must be present
for the method to execute. It is discouraged to use prepare() only.
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4.5.4 Function Arguments
There are some optional arguments that can be passed into the executing functions prepare(),
analysis(), and synthesis() at run time. All functions have access to these

– job, which is an instance of the current job, and

– slices, an integer holding the total number of slices.

while only analysis() has access to

– sliceno, which provides a unique number to each parallel analysis()-process. This
is also a mandatory argument to analysis().

The job instance contains information and helper functions regarding the current job. The
object is of type CurrentJob, which is an extension of the Job class used for job instances
that are not in the execution stage.

The analysis() function (and only the analysis() function) takes the mandatory
argument sliceno, which is an integer between zero and the total number of slices minus
one. This is the unique identifier for each analysis() process, and it is commonly used when
accessing sliced datasets or doing other parallel processing tasks, see for example chapter 6
for its use in dataset iterators.

4.5.5 Parallel Processing: The analysis() Function and Slices
The number of parallel analysis processes is set by the slices parameter in the Accelerator’s
configuration file. The input parameter sliceno to the analysis() function is the unique
identifier for each parallel function call, and its value is in the range from zero to the number
of slices minus one. When processing Accelerator datasets, the idea is that each dataset
slice should have exactly one corresponding analysis() process, so that all the slices in the
dataset can be processed in parallel.

4.5.6 Return Values
Return values may be passed from one function to any function that will execute later.
To be specific, what is returned from prepare is called prepare_res, and can be used as
input argument to analysis() and synthesis(). Furthermore, the return values from
analysis() are available as analysis_res in synthesis(). The analysis_res variable
is an iterator, yielding the results from each slice in turn. Finally, the return value from
synthesis() is stored permanently in the job directory using the name “result.pickle”.
Note that prepare_res and analysis_res are set to None if nothing is returned. Here is
an example of return value passing

options = dict(length=4)

def prepare():
# options is a global variable
return options.length * 2

def analysis(sliceno, prepare_res)
return prepare_res + sliceno

def synthesis(analysis_res, prepare_res):
return sum(analysis_res) + prepare_res

Note that when a job completes, it is not possible to retrieve the results from prepare()
or analysis() anymore. Only results from synthesis() are kept. Creating persistent
intermediate files is the topic of section C.1.17, however.

4.5.7 Merging Results from analysis()

It is common that results from different slices needs to be merged together. The Accelerator
provides a relatively general function for merging sliced data structures. Consider this
example
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# create a set of all users
datasets = ('source',)

def analysis(sliceno):
return(set(datasets.source.iterate(sliceno, 'user')))

def prepare(analysis_res):
return analysis_res.merge_auto()

Here, each analysis() process creates a set of users seen in that slice of the source
dataset. In order to create a set of all users in the dataset, all slice-sets have to be merged.
Merging can be implemented using for example a for-loop, but the actual merging operation
is dependent of the actual data type, and writing merging functions is error prone. (So
we’ve been told!) Therefore, analysis_res has a function called merge_auto(), that is
recommended for merging. This function can merge most data types, and even merge
container variables in a recursive fashion. For example, a variable defined like this

h = defaultdict(lambda: defaultdict(set))

(a dict of dicts of sets) is straightforward to merge using merge_auto(). The function
works on many data types and is less error-prone than writing special mergers every time
they are needed.

4.5.8 Standard Out and Standard Error
Anything sent to stdout or stderr during job execution will be sent both to the terminal
in which the Accelerator server was started, and to a file in the current job directory.
This covers, for example, anything output from Python’s print()-function. Thus, the job
directory contains a complete log of all printed output from the execution phase!

Output is collected in the job directory in a subdirectory named OUTPUT, and it is made
available using the .output() function, see section 4.6.7. The OUTPUT directory is created
only if anything was output from the job to stdout or stderr, otherwise it does not exist.
Inside the directory there may be files like this

job-x/
OUTPUT/

prepare # created if output in prepare()
synthesis # synthesis()
0 # analysis() slice 0
3 # 3

No empty files will be created.

4.6 The Job and CurrentJob Classes
The Job and CurrentJob classes provide functionality for easy access to data and datasets
stored in a job directory. (Datasets will be covered in chapter 5). The CurrentJob is an ex-
tension of Job that adds special functions that are useful to a method during execution. This
section provides a taste of the most common operations that are provided. See section C.1
for a complete list of the functionality.

Instances of these two classes are used extensively in Accelerator projects. In a build
script every reference to a job, such as the return value of the .build() function or any
job retrieval using the Urd database are of type Job. Any job passed as input parameter
to a .build()-call will appear as a Job instance inside the running method. Instances of
the CurrentJob class are provided when asking for a job input parameter in prepare(),
analysis(), or synthesis().

4.6.1 Writing and Reading Serialised Data
Data structures may be serialised and written to disk using job.save() and job.json_save(),
with corresponding .load() and .json_load() functions, where the first writes a Python
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“pickle” file, and the latter uses JSON encoding. Here is an example of how to write files in
a running job

def synthesis(job):
job.save('a string to be written', 'stringfile')
job.json_save(dict(key='value'), 'jsonfile')

The corresponding job.load() and job.json_load() functions can be called both in meth-
ods and build scripts. For example

jobs = ('anotherjob',)

def synthesis():
jobs.anotherjob.load('stringfile')

will load a file from another job into the currently running method, while

def main(urd):
job = urd.build('example')
x = job.load('thefile')

will load data stored by the example method using the filename thefile.pickle into the
build script.

4.6.2 Writing and Reading Serialised Data in Parallel
If data is read and written in the parallel analysis()-function, the argument sliceno=
may be used to write one file for each slice. For example

def analysis(sliceno, job)
data = ...
job.save(data, 'filename', sliceno=sliceno)

Similarly, another job can then read one of these files per slice as follows

def analysis(sliceno):
data = jobs.anotherjob.load('filename', sliceno=sliceno)

Writing “sliced” data results in n files on disk, where n is equal to the number of slices set
in the configuration file. Each filename is extended with a human readable number that
corresponds to the slice that the file’s data belongs to.

4.6.3 General File Access
The .open() function corresponds to the built in open() with the addition that it cannot
write to completed jobs, and that files written using it are book-kept in the job. It has to
be used as a context manager, i.e. using the with statement, for example like this

def synthesis(job):
with job.open('filename, 'wb') as fh:

fh.write(...)

4.6.4 Accessing a Job’s Return Value
The default behaviour of a job instance’s .load() function is to read the return value from
the job’s synthesis() function, like this

def main(urd):
job = urd.build('example')
x = job.load()

This works both in build scripts and inside methods, and is a convenient way to access data
generated by a job.
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4.6.5 Accessing a Job’s Datasets
Using the Job class, it is straightforward to access datasets in other jobs. For example

def main(urd):
job = urd.build(...)

# This will print a list of all dataset instances in the job.
print(job.datasets())

# This will return a dataset instance of the job/training dataset.
ds = job.dataset('training')

This works both in running methods and in build scripts

4.6.6 Accessing a Job’s Options and Parameters
There are two sources of parameters to a running method,

parameters from the caller, i.e. the .build()-call, and

parameters assigned by the Accelerator when the job starts building.

All these parameters are available using job.params. For example

jobs = ('anotherjob',)

def synthesis():
print(jobs.anotherjob.params.options)

will print the options dictionary that was fed to the anotherjob at build time, for example

{'message': 'Hello world!'}

A complete print of a job’s .params may look like this

{
"starttime": 1602061144.081299,
"endtime": 1602061147.2101562,
"exectime": {

"analysis": 0,
"per_slice": [],
"prepare": 0,
"synthesis": 3.111,
"total": 3.111

},

"caption": "",
"hash": "9189b775e190826f3dc6ea85ea252a9e3d647185",
"jobid": "beast-325",
"method": "plot_walk_narrowbeams",
"package": "dev",
"seed": 3621427863964846452,
"slices": 4,
"version": 3,
"versions": {

"accelerator": "2020.10.3.dev1",
"python": "3.5.2 (default, Jul 17 2020, 14:04:10) \n[GCC 5.4.0 20160609]",
"python_path": "/home/eaenbrd/checkout/project_beast.acc/venv/bin/python3"

},

"options": {
"gnbdir": 0.3839724354387525,
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"gnbpos": [

57.71525125357654,
12.83168

]
},
"datasets": {

"source": "beast-222"
},
"jobs": {

"background": "beast-4"
}

and a description of its keys

name description

package Python package for this method
method name of this method
jobid jobid of this job
starttime start time in epoch format
endtime end time in epoch format
exectime various exec times
caption a caption
slices number of slices of current Accelerator configuration
seed a random seed available for use1

hash source code hash value
versions Accelerator and Python versions
options input parameter
datasets input parameter
jobs input parameter

1 The Accelerator team recommends not using seed, unless non-determinism is actually a goal.

Note how well covered input parameters and settings are, all the way down to the specific
Python interpreter.

4.6.7 Accessing Job Output
Anything written to stderr or stdout during job execution is available using the .output()
function. Here is an example

def main(urd):
job = urd.build('example')
print(job.output())

With no argument, the .output() function returns all output. Particular parts of the
output can be selected using the options, ’prepare’, ’analysis’, ’synthesis’, or a digit
specifying a particular slice.

4.6.8 Reading Post Data
The .post attribute contains information such as starttime, execution time (per function
and slice), written files and subjobs for a job. For example

def main(urd):
job = job.build('example')

37



DRAFT
print(job.post.exectime)

4.7 From Jobs to Datasets and Back
Sometimes it is necessary to find the job that created a particular dataset, or access one of
the other datasets in a job given a certain dataset.

4.7.1 From Dataset to Job
job = ds.job

4.7.2 From Job to Dataset
ds = job.dataset("datasetname")

4.7.3 From Dataset to Dataset (in same Job)

ds = ds.job.dataset("datasetname")

4.8 Method Input Parameters
There are three kinds of method input parameters assign by the build call: jobs, datasets,
and options. These parameters are stated early in the method source code, such as for
example

jobs = ('accumulated_costs',)
datasets = ('transaction_log', 'access_log',)
options = dict(length=4)

The input parameters are populated by the builder using name matching when the job build
is initiated, see chapter 7 for more information.

The jobs parameter list is used to input references to other jobs, while the datasets
parameter list is used to input references to datasets. These parameters are populated by
the build call.

The options dictionary, on the other hand, is used to input any other type of parameters
to be used by the method at run time. Options does not necessarily have to be populated
by the build call. Instead, “default values” may be used as “global constants” in the method.
An option assigned by the build call will override the default assignment.

Note that jobs and datasets are tuples (or lists or sets), and a single entry has to
be followed by a comma as in the example above, while options is a dictionary. Individual
elements of the input parameters may be accessed inside the method using dot notation like
this

jobs.accumulated_cost
datasets.transaction_log
options.length

Each of these parameters will be described in more detail in following sections.

4.8.1 Input Jobs
The jobs parameter is a tuple of job references linking other jobs to this job. In a running
job, each item in the jobs tuple is of type Job, and it is possible to used them directly
as references to corresponding jobs. All items in the jobs tuple must be assigned by the
builder to avoid run time errors.

If the number of input jobs is not constant or known beforehand, they can be represented
as a list, like in this example

jobs = ('source', ['alistofjobs'],)

where source is a single job reference, whereas alistofjobs is a list of job references.
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4.8.2 Input Datasets
The datasets parameter is a tuple of links to datasets. In a running job, each item in the
datasets variable is of type Dataset. The Dataset class is further described in chapter 5.
All items in the datasets tuple must be assigned by the builder to avoid run time errors.

Similar to jobs, one can represent an unknown number datasets using a list, like this

datasets = ('source', ['alistofdatasets'],)

where source is a single dataset, whereas alistofdatasets is a list of datasets.

4.8.3 Input Options
The options parameter is of type dict and is used to pass various information from the
builder to a job. This information could be integers, strings, enumerations, sets, lists, and
dictionaries in a recursive fashion, with or without default values. Assigning defined options
from a build call is not necessary, and an assignment will override the “default” specified, if
any. Options are specified like in this example

options = dict(key=value, ... ) # or
options = {key: value, ...}

Options are straightforward to use and quite flexible. A formal overview is presented in
section 4.10.

4.8.4 A Specific File From Another Job: JobWithFile

Any specific file from an existing job can be input to a new job at build time using
job.withfile(). Here is an example

def main(urd):
job = urd.build('example4')
urd.build('example5',

firstfile=job.withfile('myfile1', sliced=True),
secondfile=job.withfile('myfile2'))

Inside the method, the option part is defined like this

from accelerator import JobWithFile
options=dict(firstfile=JobWithFile, secondfile=JobWithFile)

The .withfile() function requires a filename and takes two optional arguments: sliced
and extras. The extras argument is used to pass any kind of information that is help-
ful when using the specified file, and sliced tells that the file is stored in parallel slices.
(Creating sliced files is described in section 4.6.2.)

Here’s how to use the JobWithFile object in a running job. First, loading a file is done
using .load(), like this

from accelerator import JobWithFile
options=dict(firstfile=JobWithFile, secondfile=JobWithFile)

def analysis(sliceno):
print(options.firstfile.load(sliceno=sliceno))

def synthesis():
print(options.secondfile.load())

The .load() function assumes that the file is in Python Pickle format. There is also an
.json_load() function for JSON-files. To get the full filename to the file, use .filename()
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print(options.firstfile.filename(sliceno=3))
print(options.secondfile.filename())

And finally, there is also a wrapper around open(), so it is possible to do

with(options.firstfile.open(), 'rb') as fh:
data = fh.read()

4.9 Subjobs
Jobs may launch jobs, i.e. a running job may build other jobs in a recursive manner. As
always, if the jobs have been built already, they will be linked in immediately. If the build of
a subjob fails, the building job will be invalidated. Subjobs are built like in this example

from accelerator import subjobs

def prepare():
subjobs.build('count_items', options=dict(length=3))

It is possible to build subjobs in prepare() and synthesis(), but not in analysis().
The subjobs.build() call uses the same syntax as urd.build() described in chapter 7, so
input parameters like options, datasets, jobs, and caption are available for subjobs too.
Similarly, the return value from a subjob build() is a job instance corresponding to the
built job.

There are three catches, though.

1. Dataset instances to datasets created in subjobs will not be explicitly available to the
“to level” build script. The workaround is to link the dataset to the building method
like this

from accelerator import subjobs
def synthesis():

job = subjobs.build('create_a_dataset')
ds = job.dataset(<name>)
ds.link_to_here(name=<anothername>)

with the effect that the building job will act like a dataset, even though the dataset is
actually created and stored in the subjob. The name argument is optional, the name
default is used if left empty, since this is the default dataset name.

It is also possible to override the dataset’s previous dataset using the override_previous
option, which takes a job reference (or None) to be the new previous.

ds.link_to_here(name='thename', override_previous=xxx)

The link_to_here call returns a dataset instance.

2. Currently there is no dependency checking on subjobs, so if a subjob method is
changed, the calling method will not be updated. The current remedy is to use
depend_extra in the building method, like this

from accelerator import subjobs

depend_extra = ('a_childjob.py',)

def prepare():
subjobs.build('childjob')

3. Subjobs are not visible in build scripts, and does not show up in for example urd.joblist.

There is a limit to the recursion depth of subjobs, to avoid creating unlimited number of
jobs by accident. The limit can be tweaked by modifying the source code, if necessary.
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4.10 Formal Option Rules
This section covers the formal rules for the options parameter.

1. Typing may be specified using the class name (i.e. int), or as a value that will construct
into such a class object (i.e. the number 3). See this example

options = dict(
a = 3, # typed to int
b = int, # int
c = 3.14, # float
d = '', # str

)

Values will be default values, and this is described thoroughly in the other rules.

2. An input option value is required to be of the correct type. This is, if a type is specified
for an option, this must be respected by the builder. Regardless of type, None is always
accepted.

3. An input may be left unassigned, unless

• the option is typed to RequiredOptions(), or

• the option is typed to OptionEnum() without a default.

So, except for the two cases above, it is not necessary to supply option values to a
method at build time.

4. If typing is specified as a value, this is the default value if left unspecified.

5. If typing is specified as a class name, default is None.

6. Values are accepted if they are valid input to the type’s constructor, i.e. 3 and ’3’ are
valid input for an integer.

7. None is always a valid input unless

• RequiredOptions() and not none_ok set

• OptionEnum() and not none_ok set

This means that for example something typed to int can be overridden by the builder
by assigning it to None. Also, None is also accepted in typed containers, so a type
defined as [int] will accept the input [1, 2, None].

8. All containers can be specified as empty, for example {} which expects a dict.

9. Complex types (like dicts, dicts of lists of dicts, . . . ) never enforce specific keys,
only types. For example, {'a': 'b'} defines a dictionary from strings to strings, and
for example {'foo': 'bar'} is a valid assignment.

10. Containers with a type in the values default to empty containers. Otherwise the
specified values are the default contents. Example

options = dict(
x = dict, # will be empty dict as default
y = {'foo': 'bar'} # will be {'foo': 'bar'} as default

)

The following sections will describe typing in more detail.

4.10.1 Options with no Type
An option with no typing may be specified by assigning None.
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options = dict(length=None) # accepts anything, default is None

Here, length could be set to anything.

4.10.2 Scalar Options
Scalars are either explicitly typed, as

options = dict(length=int) # Requires an intable value or None

or implicitly with default value like

options = dict(length=3) # Requires an intable value or None,
# default is 3 if left unassigned

In these examples, intable means that the value provided should be valid input to the int
constructor, for example the number 3 or the string ’3’ both yield the integer number 3.

4.10.3 String Options
A (possibly empty) string with default value None is typed as

options = dict(name=str) # requires string or None, defaults to None

A default value may be specified as follows

options = dict(name='foo') # requires string or None, provides default value

And a string required to be specified and none-empty as

from accelerator import OptionString
options = dict(name=OptionString) # requires non-empty string

In some situations, an example string is convenient

from accelerator import OptionString
options = dict(name=OptionString('bar') # Requires non-empty string,

# provides example (NOT default value)

Note that “bar” is not default, it just gives the programmer a way to express what is
expected.

4.10.4 Enumerated Options
Enumerations are convenient in a number of situations. An option with three enumerations
is typed as

# Requires one of the strings 'a', 'b' or 'c'
from accelerator import OptionEnum
options = dict(foo=OptionEnum('a b c'))

and there is a flag to have it accept None too

# Requires one of the strings 'a', 'b', or 'c'; or None
from accelerator import OptionEnum
options = dict(foo=OptionEnum('a b c', none_ok=True))

A default value may be specified like this

# Requires one of the strings 'a', 'b' or 'c', defaults to 'b'
from accelerator import OptionEnum
options = dict(foo=OptionEnum('a b c').b)

(The none_ok flag may be combined with a default value.) Furthermore, the asterisk-
wildcard could be used to accept a wide range of strings
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# Requires one of the strings 'a', 'b', or any string starting with 'c'
options = dict(foo=OptionEnum('a b c*'))

The example above allows the strings “a”, “b”, and all strings starting with the character
“c”.

4.10.5 List and Set Options
Lists are specified like this

# Requires list of intable or None, defaults to empty list
options=dict(foo=[int])

Empty lists are accepted, as well as None. In addition, None is also valid inside the list. Sets
are defined similarly

# Requires set of intable or None, defaults to empty set
options=dict(foo={int})

Here too, both None or the empty set is accepted, and None is a valid set member.

4.10.6 Date and Time Options
The following date and time related types are supported:

datetime,

date,

time, and

timedelta.

A typical use case is as follows

# a datetime object if input, or None
from datetime import datetime
options = dict(ts=datetime)

and with a default assignment

# a datetime object if input, defaults to a datetime(2014, 1, 1) object
from datetime import datetime
options = dict(ts=datetime(2014, 1, 1))

4.10.7 More Complex Stuff: Types Containing Types
It is possible to have more complex types, such as dictionaries of dictionaries and so on, for
example

# Requires dict of string to string
options = dict(foo={str: str})

or another example

# Requires dict of string to dict of string to int
options = dict(foo={str: {str: int}})

As always, containers with a type in the values default to empty containers. Otherwise, the
specified values are the default contents.
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4.11 Jobs - a Summary
The concepts relating to Accelerator jobs are fundamental, and this section provides a shorter
summary about the basic concepts.

1. Data and metadata relating to a job is stored in a job directory.

2. Job objects are wrappers around job directories, providing helper functions.

The files stored in the job directory at dispatch are complete in the sense that they contain
all information required to run the job. So the Accelerator job dispatcher actually just
creates processes and points them to the job directory. New processes have to go and figure
out their purpose by themselves by looking in this directory.

A running job has the process’ current working directory (CWD) pointing into the job
directory, so any files created by the job (including return values) will by default be stored
in the job’s directory.

When a job completes, the meta data files are updated with profiling information, such
as execution time spent in single and parallel processing modes.

All code that is directly related to the job is also stored in the job directory in a com-
pressed archive. This archive is typically limited to the method’s source, but the code may
have manually added dependencies to any other files, and in that case these will be added
too. This way, source code and results are always connected and conveniently stored in the
same directory for future reference.

3. Unique jobs are only executed once.

Among the meta information stored in the job directory is a hash digest of the method’s
source code (including manually added dependencies). This hash, together with the input
parameters, is used to figure out if a result could be re-used instead of re-computed. This
brings a number of attractive advantages.

4. Jobs may link to each other using job references.

Which means that jobs may share results and parameters with each other.

5. Jobs are stored in workdirs.

6. There may be any number of workdirs.

This adds a layer of “physical separation”. All jobs relating to importing a set of data may
be stored in one workdir, perhaps named import, and development work may be stored in
a workdir dev, etc.

7. Jobids are created by appending a counter to the workdir name, so a job dev-42 may
access data in import-37, and so on, which helps manual inspection.

8. Jobs may dispatch other jobs.

It is perfectly fine for a job to dispatch any number of new jobs, and these jobs are called
subjobs. A maximum allowed recursion depth is defined to avoid infinite recursion.
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Chapter 5

Datasets
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The dataset is the preferred way to store row-column data using the Accelerator. The

dataset provides fast parallel streaming access to data, and strict typing with many sup-
ported types. Furthermore, datasets are lightweight – adding new columns to a dataset, or
appending datasets to eachother are instantaneous operations. Using datasets in a program
is simple, since all operations are avai through the Dataset class.

Datasets are created by methods, and are therefore located inside job directories. There
can be any number of datasets in a job. The most obvious way to generate a dataset is
using the cvsimport method that creates a dataset from an input file. But the fact that a
job can create and hold many datasets opens up for a lot of possibilities. The csvimport
method, for example, creates a dataset from the input data, and it can be instructed to put
unparsable lines of input data into a second “bad” dataset.

For performance reasons, datasets are split into several slices, and each data row exists in
exactly one of the slices. The actual slicing may be carried out in different ways, like round
robin, or randomly, but an interesting approach is to slice according to the hash value of a
certain column. Slicing according to a hashed column ensures that all rows with a certain
column value always ends up in the same slice. Hash-based slicing often makes completely
parallel processing of a dataset possible, since related data is not spread over different slices,
and thus no merge or “reduce” stage is required.

5.1 Dataset Internals
On a high level, the dataset stores amatrix of rows and columns. Each column is represented
by a column name, or label, and all columns have the same number of rows. Columns are
typed, and there is a wide range of types available. Typing will be introduced in section 5.8.

The dataset is further split into disjoint slices, where each slice holds a unique subset
of the dataset’s rows. Slicing makes simple but efficient parallel processing possible. See
Figure 5.1. The number of slices is set initially by the user in the Accelerator’s configuration
file, and all workdirs that are used together in a project must use the same number of slices.

On a low level, there is one file stored on disk for each slice and column. A job that
needs to read only a subset of the total number of columns may open and read from the
relevant files only.

A technical note: If the number of slices is large and files are small, there will be a
significant overhead from disk seek(), especially if using rotating disks. The Accelerator
mitigates this by changing the storage model to using single files with offset-indexing when
appropriate.
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Figure 5.1: A “movie rating” dataset composed of four columns sliced into three slices.
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5.2 Slicing and Hashing
As shown in the previous section and in figure 5.1, datasets are sliced into disjoint sets,
called slices, that can be accessed independently. Typically, in a dataset, there is one file
on disk for each slice and column. The main reason for doing this is performance. All files
could be read in parallel, and only files relevant to the task at hand are read.

How to slice a dataset is not unique. There are many ways to carry out slicing. Perhaps
the most simple way is to use round-robin, which cycles through the slices when writing,
one data item at a time. Round-robin will balance the number of rows per slice as equal as
possible, which is a good thing in many scenarios. In semi-mathematical terms, round robin
would be

n −→ n mod N

Meaning that input data row n is stored in slice n mod N .
Another way is to slice by looking at the values of a fixed single column and put all rows

with equal “property” in the same column. This way, data will be sliced “by content”, and
the number of rows per slice may vary significantly. In the context of the Accelerator, the
“property” is a hash function, and the process is called hash partitioning. A dataset can be
hashed on any single column, as long as its contents is hashable. Written as an equation, it
will look like this

n −→ hash(data) mod N

where “data” is the value of row n in the hashing column.
In many practical applications, data may be sliced using a hashing function so that data

in each slice becomes independent for the application at hand. Independent data means
that processing of the dataset can be carried out in a completely parallel fashion.

The hash function used by the Accelerator is a well-known function called siphash-2-4
that is available from the Accelerator’s gzutil library

from accelerator.gzutil import siphash24

y = siphash24(x)

This function is normally only used “under the hood”, there should be no need to call it
explicitly.

5.3 Chaining
When a dataset is created, it is optional to attach a link to another dataset using the
parameter previous. This is called chaining. Chaining provides a lightweight way to append
rows to datasets, simply by linking datasets together. A typical use case is the import of
log files. A new dataset is created from each new log file, and each dataset chains to the
previous. Reading the full chain will access all log rows. As will be discussed in detail later,
this relates to dataset iterators (see chapter 6), that may continue iterating over the next
dataset in the chain when the current dataset is exhausted. Here is a an example of how
csvimport jobs can be chained

job = urd.build('csvimport', filename='file1.txt')
job = urd.build('csvimport', filename='file2.txt', previous=job)

In order to maintain high speed when processing long chains, the Accelerator caches chain
metadata every 64th dataset. This reduces seek times significantly on rotating disks.

5.4 Dataset as Job Input Parameter
Datasets may be input to a method using the datasets input parameter list. In a running
job, the items in this list are object of the Dataset class. See the following example
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datasets = ('source',)
def synthesis():

print(datasets.source.columns)

Note the comma used to indicate that this is in fact a Python tuple of dataset(s).
It is also possible to input a list or set of datasets, like this

datasets = (['source',])
def synthesis():

for ds in datasets.source:
print(ds.columns)

5.5 Datasets from Job Objects
Information about a job instance’s datasets is provided using the job.dataset() function
and the job.datasets attribute. To find all datasets in a job, use job.datasets like in
this example

def main(urd):
job = urd.build('create_datasets')
for ds in job.datasets:

print(ds.name)

To work on a specific dataset, just ask for it using its name as input parameter to job.dataset(),

ds_first = job.dataset('first')
ds_default = job.dataset()

Without an input parameter, the default dataset is returned. An error is issued if the dataset
does not exist.

5.6 Dataset Properties
The Dataset class has a number of member functions and attributes that is intended to
make it simple to work with. These functions will be described in the next sections. But
first a note on naming datasets.

5.6.1 Dataset Name
The name of a dataset is accessible using the .name attribute, like this

print(ds_first.name)

The Accelerator is designed to handle various string encodings with ease, and in most situ-
ations the naming rules are very liberal. The dataset name, however, should preferably be
limited to ASCII characters, since a directory with the name of the dataset will be stored
on disk. The Accelerator cannot guarantee that the file system in use handles any “special”
characters. Newline is for example not allowed.

5.6.2 Column Names
All columns in a dataset may be acquired using the .columns property, like this

datasets = ('source',)

def synthesis():
print(datasets.source.columns.keys())
# may print something like
# ['GTIN', 'date', 'locale', 'subsource']

The .columns attribute is actually a dictionary from column name to properties, as will be
shown in the next section.

Not all column names are valid, see section 5.9.7 for more information.
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5.6.3 Column Properties
For each column, the name, type, and if applicable, the minimum and maximum values are
accessible like this

print(datasets.source.columns['locale'].type)
# number

print(datasets.source.columns['locale'].name)
# locale

print(datasets.source.columns['locale'].min)
# 3

print(datasets.source.columns['locale'].max)
# 107

Creation of the max and min values is a simple operation that is done in linear time when
the dataset is created. Maximum and minimum values are used for example when iterating
over chains of sorted datasets, to quickly decide if a dataset is outside range and can be
skipped in its entirety, see section 6.4.

5.6.4 Rows per Slice
It may be interesting to see how many rows there are per slice in a dataset. This information
is available as a list, for example

print(datasets.source.lines)
# [5771, 6939, 6212, 6312, 6702, 6341, 5988, 6195,
# 6741, 6587, 6518, 5840, 6327, 5933, 6745, 6673,
# 6536, 6405, 6259, 6455, 6036, 6088, 6937, 6245,
# 6418, 6437, 6360, 6106, 6878]

The first item in the list is the number of rows in slice 0, and so fourth. The total number
of rows in the dataset is the sum of these numbers.

5.6.5 Dataset Shape
The shape of the dataset, i.e. the number of rows and columns, is available from the shape
attribute

print(datasets.source.shape)
# (4, 184984)

The second number is exactly the sum of the number of lines for each slice from above.

5.6.6 Hashlabel
If the dataset is hash partitioned on a particular column, the name of this column is stored
in the hashlabel attribute

print(datasets.source.hashlabel)
# GTIN

5.6.7 Filename and Caption
The dataset may have a filename associated to it. This makes sense in situations for example
where the dataset is created from an input data file using csvimport or similar. The filename
is accessible using the filename attribute:

print(datasets.source.filename)
# /data/incoming/raw_repository_5391.gz

Furthermore, it is possible to set a caption at dataset creation time. The caption is entirely
user-defined and has no function in the Accelerator. The caption is accessible like this
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print(datasets.source.caption)
# rehash_of_raw_data

5.7 Operations on Chains
The .chain function is used to operate on dataset chains. It takes a dataset as input, some
options that will be discussed next, and returns a DatasetChain object.

# return a chain object for dataset "ds"
chain = ds.chain()

The chain()-function takes the following optional arguments

name default description

length -1 Number of datasets to include, default is -1, meaning
all datasets in chain. Do not confuse with stop_ds.

reverse False Return the datasets in reverse order. Default False.
stop_ds None Return datasets from stop_ds to current dataset.

Do not mix with length.

The returned value, chain in the previous example, is of type DatasetChain, which supports
the following operations.

name description

min(<column>) Minimum value of column, or None if column does
not exist or is not sortable.

max(<column>) Return minimum value of column, or None if column
does not exist or is not sortable.

lines(sliceno=None) Default is number of lines in chain. With option
sliceno=x, number of lines in slice x.

column_count(<column>) Number of datasets in chain containing column
<column>

column_counts() Counter of occurances per column per dataset in
chain.

with_column(<column>) A DatasetChain object containing only those
datasets that has column <column>.

iterate(...) Same arguments as Dataset.iterate(). Will iter-
ate over the whole chain.

5.8 Column Data Types
Dataset columns are typed. This means, for example, that if a column’s type is date, each
value read from the column will be in Python’s date format, ready for processing. The same
goes for all supported types, including json and pickle, that may return rather complex
datatypes.

By default, a typed column does not allow the storage of None values. This can be
changed by setting the none_support Boolean when creating the column, see section C.6.1.

All available types are shown in the following table. More details follow in the next
sections.

name description

number float or int
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float64 64 bit (double) float
float32 32 bit float

int64 64 bit signed integer
int32 32 bit integer

bits64 64 bit bitmask
bits32 32 bit bitmask

complex64 64 bit complex number
complex32 32 bit complex number

bool True or False

date date
time time
datetime complete date and time object

bytes raw data
ascii ascii is faster in python2, otherwise use unicode
unicode use for strings

json a datastructure that is jsonable
pickle a datastructure that is pickle-able!

parsed:number int, float or string parsing into number
parsed:float64 int, float or string parsing into float64
parsed:float32 int, float or string parsing into float32
parsed:complex64 int, float or string parsing into complex64
parsed:complex32 int, float or string parsing into complex32
parsed:int64 int, float or string parsing into int64
parsed:int32 int, float or string parsing into int32
parsed:json string containing parseable json

5.8.1 Arbitrary precision numbers: number

The type number is integer when possible and float otherwise. it can handle very large
numbers, up to ±(21007 − 1). The number type occupies a minimum of nine bytes on disk,
where eight is for the number itself and the additional byte is a marker.

5.8.2 Standard Fixed Size Numbers
The common int and float types in 32 and 64 bit versions are available for use when the
range of the data is known.

5.8.3 Booleans
The bool type is used to store logical True or False values only.

5.8.4 Types Relating to Time
The date, time, and datetime are compatible with Python’s corresponding classes, where
datetime is the combination of date and time. A column that is typed to any of these may
directly take advantage of the high level time related methods, like for example

for ts in datasets.source.iterate(sliceno, 'timestamp'):
print(ts.strftime('%Y-%m-%d ')
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5.8.5 String Types
There is a unicode type for strings. On Python2, the ascii type could be used as well.
The unicode type executes faster on Python3.

5.8.6 Raw Data
The bytes type is used to store raw data, such as binary image files. The upper storage
limit for a value typed as bytes is almost 2GB (231 − 1 bytes). The csvimport standard
method uses this type for all data in its output dataset.

5.8.7 Bitmasks
The bitmask types, bits32 and bits64, are stored as 32 or 64 bits of data in a dataset, and
is represented by unsigned integers in the Python code.

5.8.8 Complex Numbers
There are two complex number types, complex32 and complex64.

5.8.9 JSON
The JSON type makes it possible to store and load more complex data structures in a
dataset. Anything that is JSONable works as input. Conversion between JSON and Python
data types is done by the writers and iterators, so the user can just work on the data and
never has to see the actual JSON, for example

dw = job.datasetwriter(...)
...
a = dict(x=3, y=dict(z=5, w=[1,2,3]))
dw.write(a)

5.8.10 Pickle
The Python Pickle type is the most flexible type of all. It supports any pickle-able object,
and encoding and decoding is done on-the-fly under the hood. This means that it is possible
to write almost anything into a dataset column!

5.8.11 parsed Types
In addition, there are a few types prefixed with parsed: that allow for a more flexible
assignment of values. For example, the parsed:number type accepts both ints and floats,
as well as strings that are parseable to a number, such as ’3.14’.

5.8.12 None-Handling
The value None is valid input for all types that support None, i.e. all types except the
bitmask-types. For example, valid values for a bool type column are {True, False } without
none_support, and {True, False, None} with none_support. See section C.6.1 for more
information on none_support.

5.9 Creating a New Dataset
Datasets are created by methods using the DatasetWriter class. An instance of this class
is available in a running method as job.datasetwriter like this

def prepare(job):
dw = job.datasetwriter()
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The most common scenario is to set up the new dataset in prepare(), and write data

to it in parallel in analysis(), but is is also possible to write a dataset in an entirely
serial fashion in synthesis(). When a dataset-creating method terminates, it will create
and store all required meta-information, such as min/max values, for the created dataset(s)
automatically.

The most common arguments to DatasetWriter are

name description

filename if there is a filename associated, store it here
caption additional caption
hashlabel name of column to hash by when slicing
previous previous Dataset, for chaining
name dataset name, default set to default
parent parent Dataset when adding columns

5.9.1 Create in prepare() + analysis()

The following example will use DatasetWriter to create a dataset with three columns of
different types. The name of the dataset will be firstset. The writer will be initialised in
prepare(), and data will be written to the dataset in analysis(). Note that the example
actually creates a dataset chain, since it links the dataset under creation to the dataset
named previous from the input parameters.

datasets = ('previous',)

def prepare(job):
dw = job.datasetwriter(

previous = datasets.previous,
name = 'firstset'

)
dw.add('X', 'number')
dw.add('Y', 'unicode')
dw.add('Z', 'time')
return dw

def analysis(sliceno, prepare_res):
dw = prepare_res
...
for x, y, z in some_data:

dw.write(x, y, z)

The function dw.write() is used to write data to the dataset. The order of the variables in
the .write() function call is the same as the order of the .add() calls in prepare. There
are a few alternative ways of writing data, as shown here

# write a dict with keys corresponding to column names
dw.write_dict({column: value})

# write a list with items in same order as dw.add() calls
dw.write_list([value, value, ...])

# one parameter for each .add() call, in same order
dw.write(value, value, ...)

Several datasets can be created simultaneously using multiple writers with different names.
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5.9.2 Create in synthesis()

Since a dataset is sliced in multiple disjoint sets, and synthesis() is run only once, data
has to be sliced during writing somehow. There are two possible ways to do this. One is to
first set a slice number

dw.set_slice(sliceno)

before writing data into that slice. Note that this can only be done once per slice. The other
is to use one of the split_write functions

# use a dict-writer
writer = dw.get_split_write_dict()
writer({column: value})

# use a list-writer
writer = dw.get_split_write_list()
writer([value, value, ...])

# use a parameterised writer
writer = dw.get_split_write()
writer(value, value, ...)

These writers will write round-robin if the dataset is not hashed, and to the “matching” slice
if the dataset is hash partitioned.

5.9.3 Creating a Dataset Chain in one Job
It is possible to create a chain of datasets by inserting a writer object as previous to another
writer, like this.

def prepare(job):
dw1 = job.datasetwriter(name='ds1')
dw2 = job.datasetwriter(name='ds2', previous=dw1)

5.9.4 Completing Dataset Creation
Normally, there is no need to tell the DatasetWriter that the last line of data is written.
This is handled automatically when the method exits. In some situations, such as when a
dataset is to be used by a subjob launched from the creating method, it is necessary to
manually tell the writer that the dataset is complete. This is done by calling finish() as
shown below

dw.finish()

The finish()-call returns a dataset object, so the just finished dataset could be put in use
immediately, like this

ds = dw.finish()
it = ds.iterate(None, 'user')

5.9.5 Datasets Created by Subjobs
If a dataset is created in a subjob, it is not visible from the build scripts. This is solved by
linking dataset meta-information to the job calling the subjob, using the .link_to_here()
function. This is explained in detail in section 4.9, but the basic idea is as follows

from accelerator import subjobs
def synthesis():

job = subjobs.build('dataset_creator')
ds = job.dataset('ds1')
ds.link_to_here('first_dataset')
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Here, the subjob creates a dataset named ds1. This dataset resides in the subjob’s job
directory, but a link to it from the current job is created using the link_to_here function,
which also allows the dataset to be renamed. The current job will now claim that it contains
a dataset first_dataset.

In the same call, the subjob’s dataset’s previous can also be overridden:

ds.link_to_here('first_dataset', override_previous=anotherds)

This might sound complicated, but is simply means that the current job can export a set of
datasets created by its subjobs, and that it can manipulate these datasets so that they may
appear to be chained in any way the user finds fit.

5.9.6 Creating Hash Partitioned Datasets
A hash partitioned dataset is created by setting the hashlabel argument to job.datasetwriter.
For a hash partitioned dataset, only data fulfilling the hashing requirement for a slice may
be written to that slice, and an exception will be rised if the data to be written does not
belong to the current slice.

A simple way to filter the data to be written is to call

dw.enable_hash_discard()

first in each slice or after each .set_slice(). Then, writes that belongs to another slice
are silently ignored, while “correct” data gets written as expected.

It is possible to check before writing if the data is to be put into the current slice using
the dw.hashcheck() function, like this
...
if dw.hashcheck(hashcoldata):

# compute bulkdata here
bulkdata = expensive_function(...)
# and write to dataset
dw.write(hashcoldata, bulkdata)

This is beneficial if it is expensive to compute the data to be stored. In the example above
using hashcheck(), data is only computed if it is to be stored in the slice.

In general, the hash function for a particular column is available like this

dw.writers[colname].hash

This function can be used to manually check if the data belongs to a slice. For more details
and alternatives, please see the documentation in the source file dataset.py.

5.9.7 Column Name Restrictions
Column names must be valid Python identifiers. Invalid characters are replaced by the
underline(_) character. The underline character is also used to make column names unique
when necessary. The table below shows some examples.

input converted comment

"-" "_" Converting to valid python identifier.
"a b" "a_b" Converting to valid python identifier.
"42" "_42" Converting to valid python identifier.
"print" "print_" print is a keyword (in py2).
"print@" "print__" print_ was just taken.
"None" "None_" None is a keyword (in py3).

5.9.8 More Advanced Dataset Creation
Currently out-of-scope of this manual. Please see the source file dataset.py for full infor-
mation.
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5.10 Appending New Columns to an Existing Dataset
With minimal overhead, existing datasets could be extended with new columns. Internally,
this is implemented by storing the new column data together with a pointer to the original,
“parent”, dataset.

Appending new columns works the same way as when creating a dataset, with the ex-
ception that a link to a dataset that is to be appended to is input to the writer constructor.
Columns can be appended either in analysis or synthesis, as shown in the two following
sections. Note that appending a column does only apply to one single dataset, and not to
the complete chain of datasets, if present. See the blog at exax.org for several examples of
how to append columns to a dataset chain.

5.10.1 Appending New Columns in Analysis
The following example appends one column to an existing dataset source, while chaining
to the dataset previous.

datasets = ('source', 'previous',)

def prepare(job):
dw = job.datasetwriter(

parent=datasets.source,
previous=datasets.previous,
caption='with the new column'

)
dw.add('newcolname', 'unicode')
return dw

def analysis(sliceno, prepare_res):
dw = prepare_res
for data in datasets.source.iterate(sliceno, ... )

...
dw.write(value)

The DatasetWriter will automatically check that the number of appended rows does match
the number of rows in the parent dataset. Otherwise, an error will be issued and execution
will terminate. Typically new columns are derived from existing ones, so this is usually not
a problem.

5.10.2 Appending New Columns in Synthesis
A straightforward way to append columns to a dataset in synthesis is using the set_slice()
function, as shown in the example below.

def synthesis(job):

dw = job.datasetwriter(parent=datasets.source)
dw.add('newcolumn', 'json')

for sliceno in range(job.params.slices):
dw.set_slice(sliceno)
for data in datasets.source.iterate(sliceno, ...):

...
dw.write(x)

Note that the for-loop over all slices is controlling both the reading iterator and the dataset
writer. Note also that .set_slice() can only be called once per slice.

5.11 Standard Methods on Datasets
Figure 5.2 shows an example of how the standard methods csvimport, csvexport, dataset_sort,
dataset_hashpart, and dataset_unroundrobin can be used to change the storage of a
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dataset.

In the upper part of the figure, a file data.csv in a column storage format is imported
using the csvimport method. This method reads one line at a time and writes to the a new
dataset’s slices in a round robin fashion.

In many applications, this round robin reorder does not matter, but in some cases, such
as when the input data is a time series, it is critical to keep the order of the data intact.
In those situations, the dataset_unroundrobin is be used to “transpose” the dataset. One
can think of is as if the method reads data row by row, but writes it slice by slice. If the
csvexport method is applied to an “unroundrobined” dataset, the output CSV file will be
in the same order as the original input file.

The dataset_unroundrobin method talkes a parameter trigger_column which is used
to make sure that a slice switch does not appear as long as the data in that column is a
constant value. If the data is sorted, this ensures that all rows with a particular value is not
spread along several slices. In figure 5.2, the transition from slice 1 to slice 2 appears while
the method is writing the value “10”. If trigger_column is enabled, switching is delayed
until all “10”s are written.

The dataset_hashpart method is used to partition the data into disjoint slices based
on the content of a single column. Depending on the distribution of the data, the generated
dataset will be more or less balanced.

Finally, the dataset_sort method is used to sort data. It can sort data independently
per slice, or sort all the data in a dataset across all slices. In the latter case, there is
a trigger_column option similar to the one in dataset_unroundrobin that ensures that
slice switches appear only when the value of a particular column is changing. This is the
reason for the first column in the bottom right dataset in figure 5.2 to be so long. Slice
switching should happen while writing the “10” value, but since the trigger_column is set,
switching is delayed until all “10”s are written.
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Figure 5.2: An example of how a dataset (with three slices) is modified by some common
standard methods.
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Chapter 6

Data Iterators
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The basic idea of the Accelerator’s datasets is to make it easy to create parallel programs

that can read and write large amounts of data at a very high speed. High speed data read
access is implemented as a set of special Python iterators. Each iterator yields one tuple
at a time containing elements from one or more specified data columns, one row at a time.
In case of iterating over a single column, the output may optionally be a scalar instead of
tuple for cleaner code and more efficient computing.

6.1 The Three Iterators
Technically, iterators are members of the Dataset class. Iterators can be parallel, in
analysis(), or sequential, in prepare() or synthesis(). There are three iterators avail-
able:

iterate(), for single dataset iteration,

iterate_chain() for iterating over dataset chains, and

iterate_list() for iterating over a specified list of datasets.

And each of them will be discussed later in this chapter. For completeness, it should also
be mentioned that the DatasetChain class also has an .iterate() function, and it works
similar to iterate_chain().

In many common use cases it is sufficient to provide only two arguments to the iterator:
sliceno, which is mandatory, and columns. These, and all other arguments are presented
in detail shortly. A typical use of an iterator looks like this

datasets = ('source',)

def analysis(sliceno):
for m, u in dataset.source.iterate(sliceno, ('movie', 'user',)):

# do something with m and u here...

Python’s constructors can be used to create objects from iterators like in the following
example, where the purpose is to compose a dict.

n2d = dict(dataset.source.iterate(sliceno, ('name', 'date',)))

or this example

from collections import Counter
...

c = Counter(dataset.source.iterate(sliceno, 'user')))

that will create a counter of how many times each user is present in the dataset.

6.1.1 Iterator Arguments
All three iterators share these arguments

name default description

sliceno mandatory Slice number (an integer) to iterate over, None to
iterate over all slices sequentially, or roundrobin to
take one value per slice in a round robin fashion.

columns None Tuple of column labels or a single name if iterating
over one column. None selects all columns in alpha-
betical order.

hashlabel None Name of hash column. If the code relies on a dataset
being hashed on a particular column, set this to make
the iterator assert that this is actually the case.
Execution will terminate if the hashlabel is incorrect.
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rehash False Setting this to True will hash partition the dataset

on-the-fly based on the hashlabel column. (Rehash-
ing on-the-fly is slower, so ideally datasets should be
rehashed using the dataset_rehash method 8.5.)

status_reporting True Give status when pressing C-t. Unless manually
ziping several iterators together, this should be set
to default True. See dataset.py source code for full
information.

In addition, iterate_chain takes these arguments too

name default description

length −1 Number of datasets in a chain to iterate over. De-
fault is −1, which corresponds to all datasets in a
chain.

range None Filter rows based on a column’s value being within
a range, see section 6.4

sloppy_range False Used with range, but will iterate over full datasets
for those datasets i a chain that have values within
range, see section 6.4.

reverse False Iterate chain backwards. Default is to iterate for-
ward, i.e. from oldest to newest dataset.

stop_ds None Iterate back to this dataset. Actually, setting this
will iterate from the dataset following stop_ds to
the newest dataset in the chain.

pre_callback None A function that will be called before iterating each
dataset.

post_callback None A function that will be called after iterating each
dataset.

and iterate_list() takes a datasets parameter

name default description

datasets None List of datasets to iterate over.

6.2 Basic Iteration
Basic use include iterating in parallel or serial over one dataset or a chain of datasets.

6.2.1 Parallel Iterator Invocation
For parallel iteration in analysis(), the iterator needs to know the number of the current
slice. This information can be fed to the analysis() function in the sliceno variable. The
following is an example of iteration that happens independently in each slice.

from collections import defaultdict
datasets = ('source',)

def analysis(sliceno):
h = defaultdict(set)
for user, item in datasets.source.iterate(sliceno, columns=('user', 'item',)):
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h[user].add(item)

The program creates dictionaries mapping users to sets of items for the source dataset.
Assuming that the dataset is hash partitioned (see 5.2), this operation is entirely parallel
and there is no need to merge all the results from the analysis processes afterwards, since
the different slices do not share any keys with each other.

6.2.2 Sequential Iterator Invocation
Setting the sliceno parameter to None will cause the iterator to run through all slices of
the dataset, one slice at a time, like in this example

def synthesis():
h = defaultdict(set)
for user, item in datasets.source.iterate(None, columns=('user', 'item',)):

h[user].add(item)

Dataset slices will be iterated in increasing order.

6.2.3 Special Case, Round Robin Iteration
By default, the iterators stream slices of data. This is almost always exactly what is needed.
But sometimes, for example when the order of rows imported by csvimport matters, there
is a need for a row-wise iteration order. For maximum performance, the csvimport method
writes datasets in a round robin fashion, so iterating over a csvimported dataset does not
return the lines in the same order as they were written.

By setting the first parameter of any of the iterator functions to “roundrobin”, the
iterator will internally fetch all slice iterators and return one value at a time from each
iterator in a round robin fashion. The resulting output is then in the same order as in the
file imported by csvimport. In a dataset chain, round robin will happen per dataset. There
is a performance penalty associated with this functionality, but it is handy for time-series-like
data.

6.2.4 Special Cases, Iterating Over All or a Singe Column
It is possible to iterate over all columns in a dataset by specifying an empty list of column
names, like this

for items in dataset.source.iterate(sliceno, None):
print(items) # is a tuple of all columns

The iterator will output a tuple populated with all column values for each row. The columns
will be in sorted column name order.

If iterating over a single column, it makes little sense to keep the output values in a
one-dimensional tuple. A scalar is cleaner and more efficient. Here are the two different
ways to iterate over a single column

# alternative 1, use lists/tuples
for user in datasets.source.iterate(sliceno, ('USER',)):

userset.add(user[0]) # user is a tuple

# alternative 2, specify column as string, not list
for user in datasets.source.iterate(sliceno, 'USER',):

userset.add(user) # user is a scalar!

6.2.5 Iterate Over Chains
The iterate_chain() iterator is used to iterate over one or more datasets in a chain, starting
at the “oldest” dataset. The following example will iterate over the last three datasets in
the chain, oldest dataset first.
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datasets = ('source',)

def analysis(sliceno):
h = defaultdict(set)
for user, item in datasets.source.iterate_chain(

sliceno, columns=('user', 'item',), length=3):
h[user].add(item)

Using iterate_chain() without explicitly specifying length will default to a length of
−1, which corresponds to all datasets in the chain.

6.3 Halting Iteration
Iteration over a dataset chain will continue until all datasets are exhausted or a stop criteria
is fulfilled. There are several mechanisms for stopping, and they may be combined in a
single iterator call. If so, iteration will be over the shortest range of the conditions.

6.3.1 Halting Using length

for user, item in datasets.source.iterate_chain(
sliceno, ('user', 'item',),
length = options.length):

This will iterate for the last options.length number of datasets. Note that a length of −1
is default and will iterate without bounds.

6.3.2 Halting Using stop_ds

Similar to using length, but will stop when reaching a certain dataset.

for user, item in datasets.source.iterate_chain(
sliceno, ('user', 'item',),
stop_ds = 'foo-3'):

Stopping at a constant dataset has limited value. Next section shows how to stop iterating
based on previous jobs.

6.3.3 Halting Using Another Job’s Input Parameters

for user, item in datasets.source.iterate_chain(
sliceno, ('user', 'item',),
stop_ds = {jobs.previous: 'source',}):

This will iterate until reaching the source dataset of the jobs.previous job.

6.4 Iterating Over a Data Range
It is possible to iterate over rows having a specified column’s value within a certain range.
This works best on datasets that are sorted on the specified column.

for user, item in datasets.source.iterate_chain(
sliceno, ('user', 'item',),
range={timestamp, datetime(2016, 1, 1), datetime(2016, 3, 31),}):

This example will limit the iterator to exactly the range of lines that fulfill the range con-
dition. It is relatively costly to filter each line, and there is a speed advantage by in-
stead specifying sloppy_range, which will iterate over all datasets that contain part of the
range:
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for user, item in datasets.source.iterate_chain(

sliceno, ('user', 'item',),
sloppy_range={timestamp,

datetime(2016, 1, 1),
datetime(2016, 3, 31),}):

Here, all datasets that contain any line containing values within the range will be included
in the iteration. Still, if the datasets are sorted, and there are many datasets, the side-effect
caused by reading too many lines will be limited.

6.5 Iterating in the Reverse Direction
By default, iterating over a chain of dataset starts at the oldest dataset and ends at the
latest dataset. This behavior can be reversed by specifying reverse=True. But note that
row iteration is still in the forward direction within each dataset!
for user, item in datasets.source.iterate_chain(

sliceno, ('user', 'item',),
reverse=True):

6.6 Hash Partitioned Datasets and on-the-fly Partition-
ing

Hash partitioning a dataset on a particular column, see section 5.2, may really simplify the
parallel programming of methods using the dataset. However, the parallel code will not work
properly if it turns out that the input data is in fact not hash partitioned in the expected
way. For that reason, it is a good idea to assert the hashlabel by entering it into the iterator
function, like this

s = {user: item for user, item datasets.source.iterate_chain(
sliceno, ('user', 'item',), hashlabel='user')}

so that execution will terminate if the hashlabel is not correct.
It is possible to hash partition the dataset on-the-fly. This is done by setting the rehash

argument to the iterator to True, like this

for user, item in datasets.source.iterate_chain(
sliceno, ('user', 'item',),
rehash='item'):

# only lines with items such that
# has(item) % slices == sliceno here

While this works, the preferred way to rehash is to use the dataset_rehash method 8.5,
since it will store the rehashed dataset for later use, which in most scenarios will be more
efficient.

6.7 Callbacks
The iterator may be assigned callback functions that are called before starting iterating a
new dataset, and/or after the current dataset is exhausted. Callbacks are useful for example
to aggregate data by dataset when iterating over a large dataset chain.

There are two independent callbacks for these two cases, called pre_callback and
post_callback. If sliceno is set to None, i.e. iteration runs over all slices of all datasets
in one process, it is even possible to have callback between slice changes.

The example below will print the dataset identifier for each dataset prior to iterating
over it.
# pre_callback once per dataset
def prefun(dataset):

print(dataset.name)
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for user, item in datasets.source.iterate_chain(

sliceno, ('user', 'item',),
pre_callback=prefun):

...

The argument to the callback is the dataset instance corresponding to the dataset to be
iterated next.

Next is an example of an iterator running over all slices. The callback function is executed
before each new slice is iterated. The callback takes two arguments in this scenario, first,
the dataset instance as per the example above, and second the number of the slice.

# callback once per slice
def prefun(dataset, sliceno):

print(dataset.name, sliceno)

for user, item in datasets.source.iterate(
None, ('user', 'item',),
pre_callback=prefun):

...

The post_callback function is defined similarly.

6.7.1 Skipping Datasets and Slices from Callbacks
It is possible to skip dataset iterations by raising exceptions, as follows.

– To skip the next dataset do

raise SkipJob

– To have the iterator skip a slice, do a

raise SkipSlice

– And to abort iterating completely

raise StopIteration

In this case, a post_callback will never be run.
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Chapter 7

High Level Control: Urd
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This chapter is the continuation of chapter 3, “Basic Build Scripting”. Please read about

builds script and joblists before proceeding.

7.1 Introduction to Urd
Urd is a transaction log-based database and server used to group, tag, and keep track of
jobs. Build scripts are capable of a large variety of complicated tasks, and on top of that
Urd adds the capabilities of job organisation, storage, and retrieval. This makes it possible
to handle much larger and more advanced projects while the process is fully transparent and
reproducible.

Using Urd, a project can be separated into functionally independent parts, or sessions,
each containing at least one job, and all dependencies between jobs inside as well as between
these sessions are tracked by a transaction log. Sufficient information is stored so that any
part or session of a project could theoretically be re-constructed the way it looked at any
instance in time. More formally, Urd provides two things:

1. Separation between build scripts, and a way to share information about existing ses-
sions between different scripts (or the same script at different points in time).

2. A searchable transaction log database of all sessions, together with their dependencies
on other session. A timestamp, date, integer, or combination thereof can be used as
key.

Due to its transaction log, there is no way using the provided API to accidentally modify
or destroy data stored in the Urd database. The interesting transaction log database and
many other aspects of Urd will be explained in this chapter.

7.2 A Simple Use Case
A simple use case is presented here to illustrate the basic Urd features. Assume a project
where movie recommendation data is to be analysed. Every hour, new data corresponding
to the last hour’s activity is added to the project in the shape of a log file. The project is
based on two build scripts, one import script, and one analysis script.

7.2.1 The Import Build Script
The import scrip is used to look for new data files, and import and chain them as they
become available. For each new file that is imported, the build script will tell the Urd
server the timestamp of the file as well as a list of all jobs, i.e. the Urd session, that have
been built based on that file. Typically, this includes csvimport, dataset_type, perhaps a
dataset_hash_partition, and similar data pre-processing jobs.

7.2.2 The Analysis Build Script
The analysis build scrip is used for the data analysis work, and is perhaps run less regularly.
This script needs to know which jobs that correspond for the most recently imported file,
and this is a straightforward thing to ask Urd. When all processing is done, all the analysis
jobs are also stored in Urd together with a corresponding timestamp so that they can be
retrieved later.

7.2.3 Urd Provides Separation
In the example, Urd is used to forward information about executed jobs from the first build
script (the import script) to the second (the analysis script). In this sense, Urd provides
isolation by “message passing” between build scripts. The import scripts can be modified
or even removed, but as long as no workdirs are cleared and the Urd database is intact, it
is still possible to fetch references to the existing import jobs from Urd. Thus, it is always
possible to go back and see what things looked like at any previous point in time.
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7.2.4 Transparency
Urd also provides transparency, since it can tell which input files that were used by any
analysis job. In this way, it will never happen that there is uncertainty about which data
that was used for a particular analysis.

To investigate the result of an analysis, Urd can be asked to return the jobs corresponding
to, say, the most recent analysis jobs. The query response from Urd will contain these jobs,
as well as the results from any Urd queries that were carried out for the jobs to run. This
information will contain the import jobs, since these were queried in order to perform the
analysis.

7.3 Local or Shared Urd Server
By default, Urd is run as a local server, which means that it is not externally accessible. A
non-local Urd server that can share information between several users is straightforward to
set up, see section B.5.

7.4 Urd Sessions and Lists
A simple file import script will be used as example in this section:

def main(urd):
urd.build('csvimport', filename='txn1.txt')

In order to use this import job in a future context, a session is created by wrapping the code
by the urd.begin() and urd.finish() functions, like this

def main(urd):
urd.begin('import/txn', '2018-05-03')
urd.build('csvimport', filename='txn1.txt')
urd.finish('import/txn')

Everything that happens between .begin() and .finish() makes up the session. The
.finish() function makes sure that the session is stored permanently to disk for future
reference. In this case, the session can be retrieved knowing its list name

import/txn

and its timestamp

2018-05-03

The list identifier is composed of two parts, <user>/<list>, where <user> is for authorisa-
tion purposes. Each user can have any number of lists that are globally readable, but only
the authorised user can write to them, as will be explained later.

7.5 A First Urd Query
The list created in the previous section is stored in the Urd database and therefore ready to
be used by other build scripts. For example, here is a build script that does some processing
on the previously imported file

def main(urd):
urd.begin('process/test')

import_session = urd.latest('import/txn')

import_timestamp = import_session.timestamp
import_job = import_session.joblist['csvimport']

urd.build('process', source=import_job)
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urd.finish('process/test', import_timestamp)

The first thing that happens is that all processing is covered in a session named process/text.
The timestamp can be set in either .begin() or .finish().

The script is then retrieving the most recently created urd session stored in list import/txn.
Two things are extracted from this data, the timestamp and the joblist. The timestamp
will be used for this session as well, to indicate that processing is based on data with that
particular timestamp. A reference to the csvimport job is then extracted from the joblist
and fed to the process job as an input dataset parameter. (For information about the
joblist class, see section 3.2.)

7.6 The Contents of a Stored Session
Calling urd.finish() will update the Urd database with the contents of the current ses-
sion. Each session is addressable using a list name (in the format <user>/<list>) and a
timestamp. Session data is stored internally in the JSON format, and in build scripts it
will appear as a Python dict. The example presented earlier in this chapter may have been
recorded similarly to this

{
"user": "processing",
"automata": "test",
"timestamp": "2018-05-03",
"caption": "",
"joblist": [

[
"process",
"TEST-37"

]
],
"deps": {

"import/txn": {
"timestamp": "2018-05-03",
"caption": "",
"joblist": [

[
"csvimport",
"TEST-34"

]
],

}
},

}

(This example states that at timestamp 2018-05-03 in list processing/test, there exists
a process job TEST-34 that used a csvimport job TEST-34. This job also exists in the urd
list import/txn at timestamp 2018-05-03.)

The most important keys are

name description

timestamp Timestamp of session

caption A caption

user/automata Name of Urd list

joblist An object of type joblist, containing all jobs built
in the session. For more information, see 3.2.
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deps A dictionary of dependencies from user/automata

to urd sessions: {'user/automata': session}.

7.7 Urd Sessions: begin() and finish()

There are a number of options associated with a session, as shown here,

urd.begin(urdlist, timestamp, caption=None, update=False)
urd.finish(urdlist, timestamp, caption=None)

and the following applies

name description

urdlist is the name of the Urd list, and the same urdlist
must be specified in both begin() and finish().
The urdlist is specified as <user>/<list>, where
the <user/> part is optional. The user string is
also for authentication, and must correspond to the
current URD_AUTH settings, see section B.5.

timestamp is mandatory, but could be set in either begin(),
finish(), or both. finish() will override begin().

caption is optional, and can be set in either begin() or
finish(). finish() will override begin().

update If set to True, the last item in the list may be up-
dated. This option will be discussed in section 7.11.

The Urd transaction database will be written to only when the .finish() function is
called. Nothing is stored before calling .finish(), and it is perfectly okay to omit finish()
to avoid storage or during development work.

7.7.1 What if a Build Script is Run Again?
The Urd database is based on transaction log files. There is no way to modify or remove
information in the database using the Urd API. The first time a build script is run, it will
cause jobs to be built, and if a session is set up using begin() and finish, this session
will be stored in the Urd database. The second time the same script is run, the Accelerator
will look up already built jobs and immediately return job references instead of building
anything. As long as there are no changes, the session will look identical to the one stored
in the Urd database, and it is possible to execute finish() without errors. But if there are
any discrepancies, such as a job being rebuilt, Urd will refuse to store the differing session
and instead cause an exception to notify the user.

Normally, a build script can be written in such a way that re-running it will be consistent
will the Urd database and everything is fine. A mismatch with Urd is then an indication of
some error. But there are cases when re-writing Urd history is the desired option, and this
will be discussed in section 7.11.

7.7.2 Timestamp Definition and Resolution
The “timestamp” used to access items may be stated as either a date, datetime, "datetime",
int, (datetime, int), or "datetime+int". Here, "datetime" is a string of format
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'%Y-%m-%d %H:%M:%S.%f'

(See Python’s datetime module for explanation.) A specific timestamp could be shorter
than the above specification in order to cover wider time ranges. The following examples
cover all possible cases.

'2016-10-25' # day resolution
'2016-10-25 15' # hour resolution
'2016-10-25 15:25' # minute resolution
'2016-10-25 15:25:00' # second resolution
'2016-10-25 15:25:00.123456' # microsecond resolution

Example of a timestamp with an int

'2016-10-25+3'

Note that

– ints sorts first,

– datetimes without int sorts before datetimes with ints,

– shorter datetime strings sorts before longer datetime strings, and

– a timestamp must be > 0.

7.8 Retrieving an Urd Session
A specific session can be retrieved from the Urd database using its key and timestamp.
There are two sets of functions assigned for this, one that will record the lookup to the
ongoing session, and one that will not. The reason for recording lookups is to provide the
possibility for a session to contain references to all other sessions used to create it, and
thereby ensuring transparency.

This section is devoted to the function calls that are recorded, and these are get(),
first(), and latest(). For any of these calls to work, they have to be issued from within
a session, i.e. after a begin() call. Otherwise Urd would not be able to record session
dependencies. Section 7.9 describes the non-recording versions, and more ways to find
sessions and inspect Urd database contents is described in section 7.12.

7.8.1 Finding an Exact or Closest Match: get()

The get() function will return the single session, if available, corresponding to a specified
list and timestamp, see the following example

urd.begin('ab/anotherlist')
urd.get("ab/test", "2018-01-01T23")

The timestamp must match exactly for an item to be returned. If there is no matching item,
the get()-call will return an empty session, i.e. something like this

{'deps': {}, 'joblist': JobList([]), 'caption': '', 'timestamp': '0'}

The strict matching behaviour can be relaxed by prefixing the timestamp with one of

“<”, “<=”, “>”, or “>=”.

For example

urd.get("ab/test", ">2018-01-01T01")

may return an item recorded as 2018-01-01T02. Relaxed comparison is performed “from
left to right”, meaning that
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urd.get("ab/test", ">20")

will match the first recorded session in a year starting with “20”, while

urd.get("ab/test", "<=2018-05")

will match the latest timestamp starting with “2018-05” or less, such as “2018-04-01” or
“2018-05-31T23:59:59.999999”.

7.8.2 Finding the Latest Session: latest()

The latest() call will, for a given key, return the session with most recent timestamp. For
example

urd.begin('ab/anothertestlist')
urd.latest('ab/test')

will return a complete session, assuming that the list is exists and is populated. Otherwise,
an empty session will be returned.

7.8.3 Finding the first item: first()

The first() function works similarly to latest, but will instead return the session with
the oldest timestamp, i.e. the first session stored using the key.

7.9 Retrieving an Urd Session without Recording
As pointed out in the previous section, dependencies will be recorded when the get(),
latest(), and first functions are used. If, for some reason, the point is to just have a look
at the database to see for example if something is already there and in that case what that
is, it can be done using the “peek” functions: peek(), peek_first(), and peek_latest(),
like this:

urd.peek('test', '2016-10-25')
urd.peek_latest('test')
urd.peek_first('test')

There are some good use cases for this, but it is not recommended for general use, they may
cause a loss of continuity and visibility.

7.10 Aborting an Urd Session: abort()

There can only be one ongoing Urd session. A new session cannot be started until the
current one has finished. There are three ways to end an urd session

- execute the finish() call and have the session recorded. (Or rejected, if a session
with the same key and timestamp already exists but with different contents.)

- end the build script “prematurely” before the finish()-call. No data will be stored in
Urd.

- issue an abort() call.

The abort() function is used like this

urd.begin('test')
urd.abort()
# execution continues here, a new session can be initiated
urd.begin('newtest')

Similar to unfinished sessions, aborted sessions will not be stored in the Urd transaction log.
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7.11 Truncating and Updating
Since the Urd database is based on transaction log files, it will always keep a consistent
history of all events taken place. It is not possible to erase or modify old entries, but
it is okay to update the latest item, or set a marker in the log indicating that the list is
starting over from a certain date and everything before this marker should not be considered
anymore. This makes it possible to both keeping the full history and being able to rewrite
it. There is full transparency and reproducibility – all sessions before an update or restart
marker are always kept in the Urd log file, transaction data is always appended to the log
files.

7.11.1 Updating the Last Item
To update the last item in a list, set the update argument to True

urd.begin('test', '2016-10-25', update=True)

If update is True, the entry in the test list at ’2016-10-25’ will be updated, unless the new
information is equivalent. The update() call will simply add a new line to the Urd log
database, and if the timstamp is the same as the previous entry, the new entry will be
selected. Note that this only works for the last entry in the database, and that the previous
version is not erased, it still exists in the log file.

7.11.2 Truncating a List
Sometimes there is a need to wipe all history or at least start over from an earlier time
instance. Since data can not be erased from a transaction log, re-winding to an earlier
timestamp is implemented using inserting a “truncation” marker in the log. Any data more
recent than what is indicated by the marker is wiped from memory, and sessions with
timestamps more recent than the marker can be stored again. The truncate() function is
used to insert these markers, and it is used like this

urd.truncate(ab/'test', '2016-09-30')

This will rollback everything that has happened in the ab/test list back to ’2016-09-30’.
There is also a special case,

urd.truncate('ab/test', 0)

that will erase all items from memory and cause the list to start over again. Again, remember
that Urd is using plain text transaction log that can only be appended to. It is always
possible to recover any old result or processing state from these logs.

7.11.3 Truncation Consequences: Ghosts
When a list is truncated, all items after a specified timestamp are made invisible. Assuming
that another list has stored a dependency of an item that is truncated, the jobs in this list
are now without dependencies that can be looked up. We call them “ghosts”. Ghosts cannot
be looked up in Urd, but they are still in the database, where they are marked as ghosts.

7.12 More Search Functions
There are two more functions for finding information in the Urd database: list and since.

7.12.1 Listing all Urd Lists: list()

The list() function will return a list of all lists recorded in the database:

print(urd.list())

may show something like
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['ab/test', 'ab/live', 'production/import', 'production/live']

7.12.2 Listing all Items After a Specific Timestamp: since()

The since() function is used to extract lists of timestamps corresponding to recorded
sessions. In its most basic form, it is called with a timestamp like this

urd.since('ab/test', '2016-10-05')

which returns a list with all existing timestamps more recent than the one provided

['2016-10-06', '2016-10-07', '2016-10-08', '2016-10-09', '2016-10-09T20']

The since() function is rather relaxed with respect to the resolution of the input. The
input timestamp may be truncated from the right down to only one digits. An input of zero
is also valid. For example, these are all valid

urd.since('ab/test', '0')
urd.since('ab/test', '2016')
urd.since('ab/test', '2016-1')
urd.since('ab/test', '2016-10-05')
urd.since('ab/test', '2016-10-05T20')
urd.since('ab/test', '2016-10-05T20:00:00')

7.13 Building Jobs: build()

Jobs are dispatched in Urd sessions using the build function. Here is the complete call with
all possible parameters.

job = urd.build(
method,
options={}, datasets={}, jobs={},
name='', caption='',
why_build=False, workdir=None,
concurrency=None, **kw

)

If options, datasets, and jobs are uniquely defined in the method, they could be entered
just as plain keyword arguments. If there are ambiguities, the full options= etc. must be
used. Here is an explanation of build parameters:

name description

method Name of method to build. Enter test here if the
method filename is a_test.py. The Accelerator will
look for this file in all method directories specified in
the Accelerator’s configuration file.

kw Use to specify any unique options, jobs, and datasets
without the more elaborate dictionaries described
next.

options={} A dict of options to the method. This overrides op-
tions defined in the method itself, but adding options
not prototyped in the method is not allowed.

jobs={} A dict of jobs to the method. It is possible to specify
a list of jobs like this
jobs=dict{alljobs=[job1, job2,...]}

datasets={} A dict of datasets to the method. Datasets may be
lists too, just like jobs above.

workdir=None If specified, the job will be built in this workdir, as-
suming the workdir is specified in the configuration
file as either source or target.
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name A string associated with the job. Use it to distinguish

several jobs created from the same method in joblists.
caption A caption string. For decorative purposes only, this

has no practical use.
concurrency Specify max number of parallel processes. This can

be used to save memory, see section A.5 for more
information.

The build() function will only build a job when it has to, otherwise it will just return
a job reference to an existing matching job. In order to match, an existing job must have

- exactly the same source code, i.e. the hash of the source code must match,

- exactly the same options, datasets, and jobs.

If the source code is changed, a job rebuild can be prevented using the equivalent_hashes
variable as explained in section 4.4.3.

7.13.1 Building Chained Jobs: urd.build_chained()

This is a special version of build() that can be used for linking a set of dataset-creating
jobs. This function was created for the purpose of having build scripts that imported a large
set of files in a for-loop. It is used like this

def main(urd):
# Import a list of files
for filename, timestamp in listoffiles:

urd.begin('import', timestamp)
urd.latest('import')
job = urd.build_chained('csvimport',

filename=filename,
...
name='importing')

job = urd.build_chained('dataset_type',
source=job,
...
name='typing')

urd.finish('import')

This example will build a chain of csvimport jobs, and one chain of dataset_type jobs.
Each dataset_type job will have a corresponding csvimport dataset as source. The
build_chained() function works, provided that

– the method to build has a dataset named previous,

– a unique name= is set in .build_chained(), and

– urd.latest() is called inside the Urd session.

The call to urd.latest() is necessary for the dependency-logic to work, but the output
from the call can be discarded.

7.14 Changing workdir: set_workdir()

The target workdir specified in the configuration file is the only workdir that is written to
by default. Any other workdir is read only. This behaviour can be overridden, either

per job, using the workdir=... option to urd.build as shown in section 7.13, or

using urd.set_workdir().

The latter,
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def main(urd):

urd.set_workdir(<workdir>)}

will set the workdir for all coming build calls in the current build script. It can still be
overridden using the workdir= option to urd.build.

7.15 Profiling a Build Script: print_exectimes()

The JobList object has a helper function that can be used to print profiling information
for the joblist. The following example is self-explanatory

def main(urd):
...
urd.joblist.print_exectimes()

This will print execution times for all jobs in the session to stdout. It may for example look
like this

Time per method:
color2 23.7 seconds (25%)
csvexport 17.5 seconds (18%)
lowpass2 15.6 seconds (17%)
newcol 14.4 seconds (15%)
black 5.7 seconds (6%)
colimage 5.4 seconds (6%)
sync 4.7 seconds (5%)
clamp 3.8 seconds (4%)
dataset_type 2.7 seconds (3%)
csvimport 1.4 seconds (1%)

Total time 94.8 seconds

The methods are sorted by execution time, top to bottom.

7.16 Passing Flags from the Command Line
Flags can be added to a build script at run time using a comma separated list like this

ax run [script] --flags=verbose,skiptest

The flags will appear in the urd-object like this

def main(urd):
if 'verbose' in urd.flags:

print('verbosity')

7.17 The ax urd Command and the Board
In later versions of the Accelerator, the ax urd command provides a simple way to visualise
what is stored in the Urd database.

In addition, the Accelerator board server will render a link “urd” in the top right corner
of the web page that can be used to explore the Urd database in a web browser.

7.18 Multi-User Urd Consistency
Urd can be accessed by a large number of clients. Each client may add to or truncate any
list at any time. In order to avoid race conditions and make the database deterministic, all
add- and truncate-requests appears in a sequential manner to the Urd server. Each request
is assigned a unique timestamp, and stored in the requested list.

When Urd is restarted, it reads all the database files, and sorts all rows in order of the
receive timestamp. Thereafter, each row is applied in increasing time order to the internal,
RAM-based database. Due to the unique timestamping, the result is a deterministic replica
of the previous run.
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Chapter 8

Standard Methods

The Accelerator is shipped with a set of common standard methods, including methods to
import, type, export, and hash partition data. These methods are found in the method
directory ./standard_methods. All methods in standard_methods are designed and tested
to work on both Python2 and Python3.
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8.1 csvimport – Importing Data Files
The csvimport method is used to import a text files into a dataset. Data is imported one
row per slice in a round robin fashion. Input data is assumed to be in a tabular format, i.e.
it is composed of a number of rows, each having the same number of columns separated by
a separator token. A common format of this type is the Comma Separated Values (CSV)
format, but csvimport is much more flexible, as seen in the table of options below. For
example, csvimport can handle any separator character, skip or parse labels on the first line,
and supports advanced quote support. It also deals with “broken” input data in a predicted
and user controllable way. csvimport jobs can be chained, so any number of input files can
be connected in a dataset chain.

8.1.1 Options

name default description

filename mandatory Name of file to import. The filename is manda-
tory and the file may either be a plain text file or
a gzipped file. It is also possible to specify a file-
name including a path. If the path begins with a
slash, it is absolute. Otherwise, the path is relative
to the “input directory” configuration parameter
specified in the Accelerator’s configuration file, see
section B.4. A relative path makes it possible to re-
locate files to a different directory without trigging
job remake.

separator , Field separator character. Accepts a single
iso-8859-1 character. Leave this empty to import
each line of the input file into a single column.

comment ” Lines beginning with this character are ignored. Ac-
cepts a single iso-8859-1 character, or the empty
string for no comments. Commented lines are stored
in the skipped dataset.

newline ” Newline character. Empty means "\n" or "\r\n".
Alternatively any single iso-8859-1 character can
be chosen.

quotes ” Quote character. Empty or False means no quotes,
Truemeans both ’, and ", any other character means
itself.

labelsonfirstline True If set to True, data on the first line of the file will
be used as column labels. If False, labels must be
entered using the label option, see labels below.

labels [] If labelsonfirstline (see above) is set to False,
labels must be provided using this option. For ex-
ample labels = ['foo', 'bar',].

rename {} This option makes it possible to change the column
names read from the first line of the input file. Re-
naming happens first. It accepts a dictionary of type
{old_name: new_name,}.

lineno_label ” If set, lineno_label becomes a column containing
line numbers. Line numbers start at one (1), and
corresponds to line numbers in the input file.

discard set() Labels in the discard set will not be stored in the
dataset.
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allow_bad False By default, this is set to False and an error will

be asserted if there are problems parsing the input
data, see section 8.1.3. Setting it to True will put
all “bad” lines together with the corresponding line
numbers into a separate dataset named bad. It is
recommended to check the resulting datasets if en-
abling this option!

skip_lines 0 Skip this many lines at the start of the file. This
is useful for data files that starts with a header, for
example. Skipped lines will be stored in the skipped
dataset.

allow_extra_empty False Still consider a line good if it has extra empty fields
at the end.

skip_empty_lines False Ignore empty lines.
strip_labels False Do .strip() on all labels (happens before rename).

8.1.2 Datasets

name default description

previous None Previous dataset if creating a chain.

8.1.3 Bad Lines
A line is flagged as “bad” for one of two reasons

– there is a problem with quoting, or

– there is an incorrect number of separators.

for example

"a","b" "c" # invalid assuming two or three comma separated columns
"a","b"" ""c" # valid assuming two comma separated columns

8.1.4 Output
The result of the csvimport is a dataset named default. Lines marked as “bad” will be
stored in the dataset bad, while skipped and commented lines will be stored in the dataset
skipped. All columns will be of type bytes. Typically, the dataset from csvimport is fed
to a dataset_type job for column typing.

8.1.5 Line Numbers
A column with line numbers is always attached to the bad and skipped datasets, and
conditionally using lineno_label to the main dataset. Line numbers start at one (1), and
always corresponds to the lines in the input dataset. For example, if there are labels on the
first line of the input file, this line is number 1. Any line number can thus only appear in
one of the main, bad, or skipped datasets.

8.1.6 Limitations
Each data value is limited to 16MB maximim. However, this is just a constant in the code
that is by default set to a value that allows the Accelerator to run on low memory platforms.
If you need to store, say, bytes values larger than 16MB, please update this constant to a
larger value.
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8.1.7 Example Invocation
An example invocation is the following

urd.build(csvimport', filename='inputfile.txt', separator='\0')

this will import the file inputfile.txt assuming that there are labels on the first line and
the column separator is a null character (0x00, '\0').
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8.2 csvimport_zip – Importing zip Archives
The csvimport_zip method is a wrapper around csvimport that is used to import files
stored in zip archives. One or more files in a zip archive can be imported by a call to this
function, and each file will be imported to a separate dataset.

8.2.1 Options
All options to csvimport are available to this method as well, and the filename option is
used to specify the name of the zip file.

name default description

inside_filenames {} Dictionary from filename in zipfile to dataset name,
{'filename in zip': 'dataset name', ...}.
If left empty, all files will be imported to datasets
with cleaned up names. If there is only one file
imported from the zip (whether specified explicitly
or because the zip only contains one file) this will
also end up as the default dataset.

chaining on Can be one of off, on, by_filename, or by_dsname.

off – Do not chain the imports. Use
datasets.previous on all datasets.

on – Chain the imports in the order the files
are in the zip file.

by_filename – Chain in filename order.

by_dsname – Chain in dataset name order.
Since inside_filenames is a dict this is your
only way of controlling its order.

include_re ” Regexp of files to include, matches anywhere.
exclude_re ” Regexp of files to exclude, takes priority over

include_re.
strip_dirs False Strip directories from filename (a/b/c → c.)

If chaining is enabled, the last dataset will be the default dataset. Note that naming a
non-last dataset “default” is an error. If strip_dirs is set, the filename (as used for both
sorting and naming datasets, but not when matching regexes) will not include directories.
The default is to include directories.

8.2.2 Example invocation

urd.build("csvimport_zip",
filename="data_Q2_2019.zip",
exclude_re=r"(__MACOSX|\.DS_Store)",
chaining="by_filename",
strip_dirs=True)
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8.3 dataset_type – Typing Datasets
The dataset_type method will read a source dataset or dataset chain and type its columns.
This method is primarily used for typing datasets created by csvimport, but it can type
any column of type bytes, ascii, or unicode to any other type.

The method will also hash partition the output dataset if the hashlabel input param-
eter is set, causing a new dataset to be created. For additional information about hash
partitioning, see the dateset_hashpart method in section 8.5.

The default behaviour is to append new columns with typed data to the existing source
dataset. These columns will have the same name as the untyped version of the data, making
the untyped data “inaccessible”, even if it is still in the dataset. Using the rename option,
typed columns can be assigned a name that differs from the original name, so that both
typed and untyped data are available simultaneously. This brings transparency to the
typing process. (However, even if the untyped data is “inaccessible” in the typed dataset, it
is still available if referenced as the input dataset.)

In order to type the data, the input data is subject to parsing. Some datasets may contain
data that is incorrect in the sense that it causes parsing errors when typing. Unparseable
data can either be replaced by a default value or removed from the dataset. Since the
Accelerator’s dataset type does not permit removal of rows, i.e. datasets can not shrink,
dataset_type will in this situation create a new dataset containing only the rows containing
typeable data.

If typing a dataset chain, any columns that do not have the same type over all the typed
datasets will be discarded.

8.3.1 Datasets

name default description

source mandatory Dataset to type.
previous None Previous dataset if creating a chain.

8.3.2 Options

name default description

column2type {} A dictionary from column label to type, for example
{'movie': 'unicode:UTF-8',}.

timezone None Set input timezone for datetime columns. Output
will be in UTC. See text.

hashlabel None Hash partition dataset based on this column. Leave
as None to inherit hashlabel, set to ” to not have
a hashlabel. Hashing causes a new dataset to be
created.

defaults {} A dict from column name to default value, for ex-
ample {'COLNAME': value}. Method will fail if data
is unconvertible unless filter_bad = True.

rename {} A dictionary from old name to new name, for exam-
ple {'old': 'new'} The old name and data will be
preserved, unless a new dataset is created , and the
column with the new name will contain the typed
data.

caption Optional caption. A reasonable caption is created
automatically if left blank

discard_untyped None If set to True, force creation of new dataset and make
untyped columns inaccessible. If set to False, an er-
ror is generated if any columns were not preservable.
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filter_bad False If False, fail when a value fails to convert and there

is no default. If True, filter out the line with the
unconvertable value. This will create a new dataset.

numeric_comma False If True, write decimal number as “3,14” instead of
default “3.14”.

length -1 Go back at most this many datasets. The default is
-1, which goes until previous.source if it exists, or
first dataset in chain otherwise.

as_chain False If hash partitioning, avoid re-writing at the end by
doing one dataset per slice.

compression 6 gzip compression level.

The timezone option is used to specify which input timezone a datetime column is in. It
does not work for date or time columns. It can be set to anything accepted by the system’s
$TZ. Note

- It does not work for %s (which is always in UTC).

- No error checking can be done on this (tzset(3) can not return failure).

- On most 32bit systems this will break dates outside about 1970 - 2037.

- Setting this will mask most bad dates (mktime(3) “fixes” them).

- Do not set this to ’UTC’, leaving it as None is faster and safer.

8.3.3 Example Invocation
An example invocation is the following

urd.build('dataset_type',
source=...,
previous=...,
column2type=dict(

auct_start_dt='datetime:%Y-%m-%d ',
brand='json',
item_id='number',
comp='unicode:utf-8',

),
)

8.3.4 Typing
This section describes all typing possibilities in detail. Default behaviour when typing
numbers (i.e. floats, ints, and numbers) is that any number of whitespaces before and
after the actual number are silently discarded.

Numbers

The number type is integer or floating point.

number int or float
number:int int, will convert floats to ints.

Integers are enforced using number:int, and the type accepts trailing decimal zeroes like
7.0, 4.000 etc. This is useful when typing datafiles where numbers actually are integers
but have trailing zero decimals.
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Floating Point Numbers

Floating point numbers may be stored as 32 or 64 bits. In addition, there are six parsing
options that are useful in different scenarios. The ignore option ignores any trailing char-
acters after the number. Then there are exact that causes error if the number does not
fit, and saturate that silently saturates a non-fitting number. These can also be used in
combination, see table below for all alternatives

float32 float64 default
float32i float64i ignore, will discard trailing garbage
float32e float64e exact, error if parsed number does not fit in type
float32s float64s saturate, saturate to min/max if number does not

fit in type
float32ei float64ei exact + ignore
float32si float64si saturate + ignore

Integers

Integers are stored as either 32 or 64 bits. Parsing takes base into account, so in addition to
decimal numbers, it is also straightforward to parse octal and hexadecimal numbers. The
ignore option causes parsing to ignore trailing garbage characters.

int32_0 int64_0 auto, avoid and use a deterministic type if possible
int32_0i int64_0i auto, ignore trailing garbage
int32_8 int64_8 octal
int32_8i int64_8i octal, ignore trailing garbage
int32_10 int64_10 decimal
int32_10i int64_10i decimal, ignore trailing garbage
int32_16 int64_16 hexadecimal
int32_16i int64_16i hexadecimal, ignore trailing garbage

Integers Stored as Floats

There are also a parsing options for integers that are represented in a floating point format
in the source data. This is useful if integer data is stored with decimals, such as 5.0. In
pseudocode, the parsing basically runs int(float(value)) for each such value.

floatint32e floatint64e exact, error if parsed number does not fit in type
floatint32s floatint64s saturate, saturate to min/max if number does not

fit in type
floatint32ei floatint64ei exact + ignore
floatint32si floatint64si saturate + ignore

Convert to Boolean

It is common that a column holds values that are to be interpreted as either False or True.
The following types handles strings and floats.

strbool False if value in (False, 0, f, no, off, nil,
null, “ “)
True otherwise

floatbool True when float has bits set. Is False otherwise.
floatbooli same + ignore
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Time and Date

There are three types relating to time available, date, time, and datetime. Each of these
has a corresponding version that ignores trailing garbage characters. All time types require
a format specification (represented here by an asterisk) as described below

date:* a date with format specifier
datei:* same + ignore
time:* a time with format specifier
timei:* same + ignore
datetime:* a date + time with format specifier
datetimei:* same + ignore

The format is standard Python time formats, like shown in these examples

# will match for example '2017-03-22'
auct_start_dt='date:%Y-%m-%d '
# will match for example '183000', i.e. half past six in the evening
tod='time:%H%M%S'
# will match for example '2017-03-22 18:30:15'
timestamp='datetime:'%Y-%m-%d %H:%M:%S'

Strings and Byte Sequences

There are a number of ways to read string and byte data, depending on how the raw input
data is to be interpreted. The basic types are shown first, and the more advanced variations
and options will be described below.

bytes list of bytes
bytesstrip list of bytes, strip characters 8-13, 32 from start and

end
ascii list of ASCII characters
asciistrip list of ASCII characters, strip characters 8-13, 32

from start and end

When typing to unicode and ASCII, there are several ways to handle individual unparsable
characters. For unicode, there are two types,

unicode:* list of unicode characters
unicodestrip:* list of unicode characters, strip characters 8-13, 32

from start and end

The asterisk represents options that take the form

"codec" #or
"codec/errors"

unicode:codec/errors will read bytes encoded in codec and write "unicode" (which is
stored as utf-8, but that’s invisible to the Python side). codec is often utf-8, but could
be for example utf-8, ascii, iso-8859-1, iso-8859-15, cp437, or windows-1252 etc. See
the Python documentation

https://docs.python.org/2/library/codecs.html#standard-encodings

for more information. The errors part is optional, and can be one of
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strict The default, an error marks this row as bad
ignore All unparsable bytes are discarded.
replace All unparsable bytes are replaced by the unicode replacement

character ("\ufffd").

Using strict will cause errors if unparsable. For example, typing the string "ab\xffc" will
give an error (strict), "abc" (ignore), or "ab\ufffdc" (replace). strip will happen before
ignore.

ASCII is similar, there are two types

ascii:* list of ASCII characters
asciistrip:* list of ASCII characters, strip characters 8-13,32

from start and end

where the argument is one of

strict The default, an error marks this row as bad
ignore All unparsable bytes are discarded
replace All unparsable bytes are replaced by an octal escapes "\ooo"
encode Like replace except "\" is also replaced by "\134" (for full re-

versibility).
Using strict will cause errors if unparsable. strip will happen before ignore.
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8.4 csvexport – Exporting Text Files
The dataset_export method is used to export datasets to column based text files (CSV,
Comma Separated Values). It can export plain files and gzip-compressed files, export a
chain of datasets, export one output file per slice, and more. Read the Options section for
full details.

Options

name default description

filename result.csv Name of output file. File will by default be stored
in the job’s job directory. The filename has to end
with “.csv” for plain text files, and “.gz” for gzipped
output.

separator ’,’ Column separator.
labelsonfirstline True If True, write column names on first row.
labels [] Specify which labels to export. An empty list corre-

sponds to all labels in dataset.
chain_source False If True, read a dataset chain from datasets.source

back to jobs.previous
quote_fields empty

string
Export quoted fields. Must be empty (no quote char-
acter, default), “’“, or “"“.

lazy_quotes True Only quote field if value needs quoting.
line_separator ’\n’ Line separator.
none_as None A string or {label: string} to use for None-values.

Default ’None’ (’null’ for json).
sliced False Each slice is exported in a separate file when True. If

so, use "%02d " or similar in filename as placeholder
for the slice number.

compression 6 gzip level

Datasets

name default description

[source,] mandatory Either A single dataset or a list of datasets.

Jobs

name default description

previous None Job reference to previous csvexport if chained.

8.4.1 Example Invocation
An example invocation is the following

urd.build(csvexport',
source='test-3/foo',
filename='output.txt.gz',
separator=' ',
quote_fields="\'")
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8.5 dataset_hashpart – Hash Partition a Dataset
The dataset_hashpart method will create a new dataset based on its source dataset. The
new dataset will be hash partitioned on a column specified in the options.

Options

name default description

hashlabel mandatory column for hashing, required. Note that columns
typed as list, set, or json cannot be used for hash-
ing.

length -1 Go back at most this many datasets in a chain. De-
fault is -1, which goes back to previous.source if it
exists, or to the first dataset in the chain otherwise.

caption Optional caption. A reasonable caption is created
automatically if left blank

as_chain False True generates one dataset per slice, False generates
one dataset. Default False.

Datasets

name default description

source mandatory Source dataset to hash partition
previous None Previous dataset to chain to.

8.5.1 Example Invocation
An example invocation is the following

urd.build('dataset_hashpart', source=jid, hashlabel='start_date')

8.5.2 Hashing Details
This method will create a new dataset based on all the data in the source dataset. The
difference between input and output is in which slices the rows will be stored. For each row,
the target slice is determined based on the output value of a hashing function applied to a
certain column (the hashlabel) of that row. To illustrate the operation, the code is similar
to

from accelerator.gzutil import siphash24

target_sliceno = siphash24(cols[hashlabel]) % params.slices

The hashlabel column can be of any type except json and pickle!

8.5.3 Notes on Chains
1. The default operation is to hash partition a complete chain of datasets from source

back to previous.source. This is controlled by the length option.

2. Internally, dataset_hashpart always generates one dataset per slice in a chain. This
is also what is returned if as_chain == True. Otherwise, all datasets will be con-
catenated into one. Thus, there is a choice of either having the output as a chain of
datasets – or as a single dataset. The chain will execute faster, since the concatenation
step is omitted.
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8.6 dataset_filter_columns – Removing Columns from a

Dataset
The dataset_filter_columns method removes columns from a dataset. It is typically run
before applying methods that operate on all columns of a dataset and only a subset of the
columns are required. A typical example is dataset_hashpart that operates on all columns
of a dataset. If not all columns are needed, time and storage can be saved by removing
columns using this method prior to applying dataset_hashpart.

Note that this method only updates soft links, and no data is actually copied. So
execution time is typically a fraction of a second and no redundant data is written to disk.

Options

name default description

keep_columns [] A list of columns to keep.
discard_columns [] A list of columns to remove.

Only one of keep_columns and discard_columns may be populated.

Datasets

name default description

source mandatory Source dataset to filter.
previous None Previous dataset to chain to.
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8.7 dataset_sort – Sorting a Dataset
The method dataset_sort is used to sort relatively large datasets. One or more columns
may be selected for sorting, and it will sort one column at a time. The sorting algorithm is
stable, meaning that things with equal sorting keys will keep their order.

Options

name default description

sort_columns mandatory A column or a list of columns. If a list is specified,
sorting will be carried out from left to right.

sort_order ascending Could be reversed by specifying descending
sort_across_slices False If False, only sort within slices. Otherwise sort

across slices.
trigger_column ” If sort_across_slices is set, use this to delay the

slice switches to the next line where the value in this
column changes.

Datasets

name default description

source mandatory A dataset to sort.
previous None A previous dataset to chain to.

8.7.1 Sorting None and NaN values
The special values None and NaN follow these rules

• NaN will sort same as +Inf, i.e. last.

• None sorts as -Inf, i.e. first in float columns. Intermingled None and -Inf will keep
their original order due to the stable sorting algorithm.

• None sorts last in date, time, and datetime columns.

• For all other types, None sorts first.

8.7.2 Spreading of Left Over Values
If the number of rows in a dataset is not even divisible by the number of slices, some slices
will have one more row than others. Instead of putting this data in, say, the first slices,
dataset_sort attempts to even out any bias by selecting the slices that get the additional
data row in a pseudo-random manner. In order to have the sorting stable, selection of slices
is based on the first values of the sorting column. It is not perfect, if the data is already
sorted the first slices will be picked, but it is stable, which is the most important thing.

8.7.3 The Trigger Column
If sorting across slices, i.e. the full dataset will be sorted from the first to the last slice, the
trigger_column could be used to delay the slice switching so that it does not appear unless
the value in the column is changing. This is beneficial in parallel processing tasks, because
it localises values to single slices.
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8.7.4 A Practical Limitation
Internally, the method works by reading the columns to sort by, and create an indexing
column that stipulates the sorting order. Each column is then read in turn and sorted
according to the sorting column. Therefore, the method has limited sorting capability.
Internally, it sorts one column at a time, and it needs to hold that complete column plus an
indexing column in memory simultaneously. Still, a standard computer can sort very large
datasets without trouble.
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8.8 dataset_checksum, dataset_checksum_chain
The dataset_checksum method is used to create a single checksum from a dataset based on
one or more columns. The chained version returns a single checksum from a dataset chain.
It is mainly intended as a debugging aid, enabling comparison of datasets across machines,
even if they have different slicing.

If options.sort=False, hashing will depend on the actual row order of the dataset.
If, on the other hand, options.sort=True, hashing will be slice invariant and row order
invariant, meaning that the methods only look at the contents of the dataset(s).

Chain limits will affect the checksum of a chain, so if checksumming two chains containing
the same data, but with different number of chained datasets, their checksums will differ.

Note that sorting uses about 64 bytes per row, upper limiting the size of hashable
datasets. This corresponds to about 1GB of RAM per 20 million lines or so.

Note also that pickle-columns cannot be used for checksumming, since the order of the
pickled data stricture is not defined.

The checksum will be printed to stdout as well as written to result.pickle.

Options

name default description

columns set() A set of columns to base the checksum on. Leave
blank for all columns

sort True Sort dataset before hashing, see text.
chain_length -1 Number of datasets in chain to hash. Only for

dataset_checksum_chain.

Datasets

name default description

source mandatory A dataset to checksum.
stop None Stop hashing at this dataset. Only for

dataset_checksum_chain.
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8.9 dataset_merge – Merge Several Datasets into One
Merge two or more datasets. The datasets must have the same number of lines in each
slice and if they do not have a common ancestor you must set allow_unrelated=True.
Columns from later datasets override columns of the same name from earlier datasets. Note
that merging is a very fast constant time operation.

Options

name default description

allow_unrelated False Must be True to join datasets that do not share a
common ancestor.

Datasets

name default description

[source,] mandatory A list of datasets to merge.
previous None Previous for the merged dataset.
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8.10 dataset_unroundrobin – Transpose a Dataset
This method will transpose the dataset so that first row from slices 0, 1, 2, . . . will end
up in slice 0 rows 0, 1, 2 . . . . It always creates a new dataset. If trigger_column is set
to the name of a column, slice switching is delayed until the data in the specified column
changes. Otherwise, the new dataset will have the same number of rows per slice as the
source dataset.

The trigger_column will ensure that no value is spread over more than one slice, as-
suming that all occurances of the same value are grouped together, which is helpful in many
parallel processing cases.

Options

name default description

trigger_column None Set to delay slice switching based on content.

Datasets

name default description

source mandatory An input dataset.
previous None Previous for the created dataset.
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Chapter 9

Accelerator Command Line Tools
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The Accelerator is controlled using the ax shell command. In order to run any command,

ax needs to have access to a configuration file (see section B.4). The ax command will look
for this file first in the current directory, and then recursively in directories above it.

It is assumed that the Accelerator server and build script run commands are executed
from the same directory. This will work out of the box. But if set up correctly, they could
be run from different directories or even from different computers if necessary.

Asking for help is always an option. To begin,

ax --help

will print something like

usage: ax [--config CONFIG_FILE] command [args]

optional arguments:
-h, --help show this help message and exit
--config CONFIG_FILE configuration file
--version alias for the version command

commands:

abort abort running job(s)
board runs a webserver for displaying results
curl http request (with curl) to urd or the server
ds display information about datasets

grep search for a pattern in one or more datasets
init create a project directory
job information about a job

method information about methods
run run a build script

server run the main server
urd run the urd server

version show installed accelerator version
workdir information about workdirs

aliases:
cat = grep ""

use ax <command> --help for <command> usage

All commands accept the option –help to display more detailed information about its useage.
Next, a quick summary will be presented before going into the details of each command.

9.1 Quick Summary of Commands
To start with, a new project is initiated using the init command,

ax init

This command creates everything required to starting a project, including directories for
input data and workdir storage. It even sets up an empty git repository for the project’s
source files. All this can be overridden or specified in detail using the command’s switches.

Next, an Accelerator server is started using

ax server

The server is configured using the configuration file that is typically set up by the init
command.

A build script is run using
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ax run

The idea is that the main project build script is run just like that, but it is possible to specify
specific scripts to run as arguments. For systems with limited memory, and interesting idea
is the possibility to set the concurrency for all or some methods using a switch. This will
save memory resources, since only a subset of all parallel processes will be run at once.

At any point in time, it is possible to abort the server processing using

ax abort

When coding, it is useful to have access to the list of available methods and their inter-
faces, this is provided using the

ax method

command. It can either provide a list of methods per package, together with an optional
description, or given a specific method name it will print its documentation + interface.

When a script has been run, any job can be inspected using

ax job <jobid>

that will print execution times, input parameters, output file names etc for jobs. It takes
either jobids or paths as input.

Similarly,

ax ds <dataset>

holds the key for a lot of information about datasets. Everything from column names,
max/min-values, and types to distribution of elements per slice is available. If the input is
a job, it will look for the job’s default dataset, but it can also show the name of all dataset
in a job, and more.

To look at the data in a dataset, use

ax grep <pattern> <dataset>

or just

ax cat <dataset>

to stream the data to stdout. Using switches data can be output per slice or “in parallel”,
it can print header labels and more.

To learn about available workdirs, and which jobs that exists in workdirs,

ax workdir

is used to either list all available workdirs, or list all jobs in a workdir.
Finally,

ax version

will print the current version of the Accelerator.

9.2 Initialisation: ax init

In order to start a new project, a few things need to be set up, in particular

identify existing / create new workdirs,

identify existing / create new method packages, and

write a configuration file.

This can be done manually, but a simple way to start from scratch is to use the init
command
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ax init

with the following options

ax init --help

usage: ax init [-h] [--slices SLICES] [--name NAME] [--input INPUT] [--force]
[--tcp [HOST/PORT]] [--no-git] [DIR]

creates an accelerator project directory.
defaults to the current directory.
creates accelerator.conf, a method dir, a workdir and result dir.
both the method directory and workdir will be named <NAME>,
"dev" by default.

positional arguments:
DIR project directory to create. default "."

optional arguments:
-h, --help show this help message and exit
--slices SLICES override slice count detection
--name NAME name of method dir and workdir, default "dev"
--input INPUT input directory
--force go ahead even though directory is not empty, or workdir

exists with incompatible slice count
--tcp [HOST/PORT] listen on TCP instead of unix sockets.

specify HOST (can be IP) to listen on that host
specify PORT to use range(PORT, PORT + 3)
specify both as HOST:PORT

--no-git don't create git repository

9.3 Accelerator Server: ax server

The Accelerator server, or daemon, needs to be running in order to execute any com-
mands.
ax server

will start the Accelerator server, assuming that a configuration file that makes sense is in
place.

ax server --help

usage: ax server [-h] [--debug]

optional arguments:
-h, --help show this help message and exit
--debug

Communication with the Accelerator server will take place over an UNIX socket by default.
There is no need for any additional configuration to make that happen. It is possible, how-
ever, to communicate over a TCP port instead if specified in the Accelerator’s configuration
file.

9.4 Running Build Scripts: ax run

Build scripts are executed using
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ax run <script>

ax run --help

usage: ax run [options] [script]

positional arguments:
script build script to run. default "build".

searches under all method directories in alphabetical
order if it does not contain a dot.
prefixes build_ to last element unless specified.
package name suffixes are ok.
so for example "test_methods.tests" expands to
"accelerator.test_methods.build_tests".

optional arguments:
-h, --help show this help message and exit
-f FLAGS, --flags FLAGS

comma separated list of flags
-q, --quick skip method updates and checking workdirs for new jobs
-c SPEC, --concurrency SPEC

set max concurrency for methods, either method=N
or just N to set for all other methods

-w WORKDIR, --workdir WORKDIR
build in this workdir
set_workdir() and workdir= override this.

-W, --just_wait just wait for running job, don't run any build script
-F, --fullpath print full path to jobdirs
--verbose VERBOSE verbosity style {no, status, dots, log}
--quiet same as --verbose=no
--horizon HORIZON time horizon - dates after this are not visible in

urd.latest

When the run command starts, it will instruct the Accelerator to scan all method di-
rectories to see if there are any new or changed methods. Thereafter, the Accelerator will
proceed and scan all source workdirs to see if any new jobs have been created (by another
Accelerator server). Thereafter, it will execute the build script.

9.5 Dataset Information: ax ds

The ds command gives a compact, but easy to read, overview of either

a dataset,

a chain of datasets, or

available datasets in a job directory.

it provides information about column names and types, max and min values, number of
rows, and balance of rows between slices.

usage: ax ds [options] ds [ds [...]]

positional arguments:
dataset the job part of the dataset name can be specified in

the same ways as for ``ax job''. you can use ds~ or
ds~N to follow the chain N steps backwards, or ^ to
follow .parent. this requires specifying the ds-name,
so wd-1~ will not do this, but wd-1/default~ will.

optional arguments:
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-h, --help show this help message and exit
-c, --chain list all datasets in a chain
-C, --non-empty-chain
list all non-empty datasets in a chain
-l, --list list all datasets in a job with number of rows
-L, --chainedlist list all datasets in a job with number of chained rows
-m, --suppress-minmax
do not print min/max column values
-n, --suppress-columns
do not print columns
-q, --suppress-errors
silently ignores bad input datasets/jobids
-s, --slices list relative number of lines per slice in sorted order
-S, --chainedslices same as -s but for full chain
-w, --location show where (ds/filename) each column is stored

The dataset option is either a dataset, when used with the -s, -S, and -c options, or a
jobid when used with -l option. Datasets or jobids could be either names or absolute paths.
Examples of valid datasets are test-2, test-2/default, and /home/wdirs/test/test2/dsx.
Of these, only test-2 is a valid jobid. Here are all options

-h
–-help

show help message and exit.

-q
–-quiet

Silently ignore any error.

When ds is fed with dataset(s)

-c
–-chain

Print name and number of lines for all datasets in the chain.

-s
–-slices

Print absolute and relative number of lines per slice for the
input dataset.

-S
–-chain

Same as -s, but data is for the whole chain of datasets.

When ds is fed with jobid(s)

-l
–-list

Print the name and number of lines of all datasets in the
input jobid.

Example invocation 1

ax ds test-20 -S

or

ax ds test-20/badlines

The argument can be one or more jobids or dataset ids. If the argument is a jobid, it is
assumed that the dataset name is default. If there are more than one dataset in the job,
a list of dataset names will be returned.

Example invocation 2

Combining ds will shell features can be an elegant way to extract information from a workdir.
For example
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ax ds -l -q test-{0..99}

will scan for datasets in the 100 first jobs of test. Adding the -q option will make ds
suppress the warning messages for those jobs that do not contain any datasets.

Example invocation 3

Find all datasets in test-20

ax ds -l test-20

Example Output

import-2340/default
Previous: import-2245/default
Hashlabel: serial_number
Columns:

capacity_bytes int64 [ -1, 14000519643136]
date date [2019-04-01, 2019-06-30]
failure bool [ False, True]
model ascii

* serial_number ascii
5 columns
9,831,138 lines
Chain length 17, from import-269 to import-2340
Balance, lines per slice, full chain:

1: 4.44% (6,486,330) 20: 4.35% (6,365,896) 3: 4.32% (6,323,701)
0: 4.43% (6,472,949) 17: 4.35% (6,363,206) 19: 4.31% (6,309,295)
11: 4.39% (6,423,397) 21: 4.35% (6,360,759) 12: 4.31% (6,306,181)
4: 4.39% (6,421,043) 15: 4.35% (6,358,757) 8: 4.31% (6,304,311)
6: 4.39% (6,418,617) 7: 4.34% (6,352,750) 13: 4.31% (6,303,637)
14: 4.39% (6,417,911) 18: 4.34% (6,348,128) 5: 4.28% (6,252,735)
2: 4.36% (6,376,139) 10: 4.34% (6,347,694) 16: 4.26% (6,230,543)
22: 4.35% (6,366,040) 9: 4.33% (6,325,241)

Max to average ratio: 1.020
146,235,260 total lines in chain

The max to average ratio shows the ratio between the slice with most rows and the
average number of rows. This can be interpreted as the execution time overhead for a
dataset where all slices are not of the same size. When the ratio is close to one, the dataset
is perfectly balanced.

9.6 Look at Specific Data in a Dataset: ax grep

The grep command is a parallel grep for datasets that is used to look at data stored in
datasets or dataset chains.

usage: ax grep [options] pattern ds [ds [...]] [column [column [...]]

positional arguments:
pattern
dataset can be specified in the same ways as for ``ax ds''
columns

optional arguments:
-h, --help show this help message and exit
-c, --chain follow dataset chains
-C, --color color matched text
-i, --ignore-case case insensitive pattern
-H, --headers print column names before output (and on each change)

101



DRAFT
-o, --ordered output in order (one slice at a time)
-g COLUMN, --grep COLUMN
grep this column only, can be specified multiple times
-s SLICE, --slice SLICE
grep this slice only, can be specified multiple times
-t SEPARATOR, --separator SEPARATOR
field separator (default tab)
-D, --show-dataset show dataset on matching lines
-S, --show-sliceno show sliceno on matching lines
-L, --show-lineno show lineno (per slice) on matching lines

The pattern is a regular expression and ds are datasets. Strings and columns with special
characters have to be quoted. For example

ax grep Alice test-0 test-1/special name

Will look for the string Alice in the name column of the two datasets text-0 and test-1/special.

9.7 Information about Methods: ax method

Use ax method to print a list of available methods together with an optional descrip-
tion.

ax method

The method description is shown by specifying a method name

ax method csvimport

Descriptions are added using the description="some string" statement in a method.

9.8 Aliases
It is possible to create aliases for common tasks. Aliases are inserted in the file config in the
$XDG_CONFIG_HOME directory. By default, this corresponds to the file $HOME/.config/config.
In this file, aliases are entered in the [alias] section like this

[alias]
jo = job -O

This will create the alias ax jo that is equivalent to ax job -O.

9.9 Show Dataset Contents: ax cat

The data in a dataset may be printed to stdout using the cat alias, for example like this

ax cat test-0 | less

This is an alias for ax grep "", which greps a dataset for the empty regexp, which matches
every line.

9.10 The Urd Job Database Server: ax urd

By default, a local Urd server is running when the Accelerator server is running. Read more
about this in section 7. A stand-alone Urd server is started by

ax urd

These are the options
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ax urd --help

usage: urd [-h] [--port PORT] [--path PATH]

optional arguments:
-h, --help show this help message and exit
--port PORT server port (default: 8080)
--path PATH database directory (can be relative to project directory)
(default: ./urd.db)

Remember to set matching values in the Accelerator’s configuration file so that it can find
the Urd server.

9.10.1 Authorization to Urd
Authorisation to Urd could be set in the URD_AUTH environment variable. A common way
to invoke the run command with Urd authorisation is like this

URD_AUTH=user:passwd ax run [script]

Note that the purpose of the authentication is actually identification. It is used to get write
access to certain Urd lists. Nothing more.

9.11 Aborting a Running Job: ax abort

The command ax abort will abort any running job. To abort an entire build script, first
type Ctrl-C followed by ax abort.

usage: ax abort [-h] [-q]

optional arguments:
-h, --help show this help message and exit
-q, --quiet no output

9.12 Current Version: ax version

Use ax version to find the currently running version. The Accelerator will complain if the
ax command version does not match the currently running server.

9.13 Workdir Information: ax workdir

By itself, ax workdir will print a list of all current workdirs. By specifying a workdir, all
jobs in that workdir, together with execution time and information if it is old or current will
be listed. All jobs in all workdirs will be listed using the -a option.

usage: ax workdir [-a | [workdir [workdir [...]]]

positional arguments:
workdirs

optional arguments:
-h, --help show this help message and exit
-a, --all list all workdirs
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9.14 The Urd Server: ax urd

The Urd server is started by ax server by default. It is possible to set up a separate Urd
server, for example for a larger project with several participants, see section B.5.

usage: ax abort [-h] [-q]

optional arguments:
-h, --help show this help message and exit
-q, --quiet no output

[eaenbrd][13:56:46][~/beast] ax urd --help (git)-[master]
usage: ax urd urd [-h] [--path PATH] [--allow-passwordless] [--quiet]

optional arguments:
-h, --help show this help message and exit
--path PATH database directory (can be relative to project directory) (default: urd.db)
--allow-passwordless accept any pass for users not in passwd.
--quiet less chatty.

9.15 The Board Web Server: ax board

The Board server is a web server that exposes information about jobs and results through
the use of a standard web browser. This is started by default by the ax server command,
but it can be started separately using ax board.

usage: ax board [listen_on]
runs a web server on listen_on (default localhost:8520, can be socket path)
for displaying results (result_directory)

9.16 Displaying Urd Database Content: ax curl

The ax curl command is just a shorthand for the general curl tool. It is used to query
information from the Urd transactional database. See section ?? for infomation on how to
use it.
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Appendix A

Miscellaneous
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A.1 Workdirs
Jobs are stored in workdirs. Workdirs are defined in the Accelerator’s configuration file,
where at least one workdir must be specified.

By default, the only workdir that is written to is the target workdir, while all other
defined workdirs are for reading. It is possible to override this, however, by setting the
workdir= option in the urd.build() call, see section 7.13.

Jobdirs are stored in the workdir by the server, and jobdirs will inherit the workdir name
and add a suffix that is an incremental job counter. Here is an example of a workdir named
test, that contains three jobdirs.

test/
.slices.conf
test-0/
test-1/
test-2/
test-LATEST -> test-2

The .slices.conf file contains the number of slices used for the workdir. The link <workdir>-LATEST
is always pointing to the last jobdir created. This is useful for example when iteratively test-
ing a method and accessing its data for example for plotting purposes. Each new build of
the (modified) method will create a new job, and the link will always point to the most
recent version.

A.1.1 Creating a Workdir
If a workdir defined in the configuration file does not exist on disk at the stated location,
the server will exit and print an error stating that a directory is missing. The first time the
server encounters a new directory it will initialise it in accordance with the configuration
file. So, new workdirs are created by adding them to the configuration file and creating the
corresponding directories. The Accelerator will then initiate these directories on the next
startup.

The initiation process creates a file named .slices.conf that indicates that the directory
is now a workdir. This file contains the number of slices that is used for the workdir.

A.2 Status (Progress) Reporting
During job building, it is possible to press C-t, i.e. Ctrl + t simultaneously, in the run
shell to get status information. The built in status will report the processing state, if it is
in prepare(), analysis(), or synthesis(). Iterators report which dataset (perhaps in a
chain) that is currently being iterated, and the blob functions report status of file pickling.

The status module makes it possible to insert status reporting into any method. For
more information about status reporting, see section A.3.

A.3 Generating Progress Messages: the status Module
The status module is used by the Accelerator to report processing state. It is also used by
various functions to report iterator and file access progress. Status messages are presented
in the run shell by pressing C-t, i.e. the Ctrl and t keys simultaneously.

The status module can be used to write progress and status messages for any function.
Here is an example of how to use the status module

from accelerator import status
...
def analysis(sliceno):

msg = "reached line %d already!"
with status(msg % (0,) as update:

for ix, data in enumerate(datasets.source.iterate(sliceno, 'data')):
if ix % 1000000 == 0:
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update(msg % (ix,))

In the example above, the status message will be updated once every million iteration. By
pressing C-t during its execution, the user will get a message telling how many lines the
iterator has reached.

A.4 Working with Relative Paths
In some situations, like importing data from files, it is convenient to store the absolute path
of the files as a configuration parameter and then work only with relative paths in the source
code. This has two advantages.

First, it makes it possible to move input files around without forcing a re-build of the
import jobs, and

second, absolute paths will not be stored in the source code.

In order to make use of relative paths, store the “system dependent” left part of the path
in the Accelerator’s configuration file. There are two variables in the configuration file that
can be used for this, and they have different purposes. The input_directory variable is
intended for reading input files, and the result_directory is intended for writing output.
See the following subsections for details.

A.4.1 The input_directory

Files stored in the input_directory can be accessed using the CurrentJob object either
like this

def synthesis(job)
fname = job.input_filename('afile.csv')

or like this

def synthesis(job)
with job.open_input('afile.csv', 'rt') as fh:

for line in fh:
...

Since the input_directory is defined in the Accelerator’s configuration file, the input di-
rectory can be moved and re-defined without having to re-execute any built jobs.

A.4.2 The result_directory

Storing files in job directories is great for transparency, but in some cases it is conve-
nient to keep a reference to result files in a common place. This is the purpose of the
result_directory. However, storing files in this directory directly would void the connec-
tion to the job that created it. A better way is to keep the file in the job directory and create
a symbolic (soft) link to it in the result directory. This functionality is implemented in the
job.link_result() function that is available to build scripts, and used like this

def main(urd):
job = urd.build('somejob')
job.link_result() # links the job's "result.pickle" to result_directory
job.link_result('result.txt')
job.link_result('result.txt', linkname='result_from_somejob.txt')

Note that this only works in build scripts. The job.link_result(filename) call will create
a symbolic link named filename in the result_directory defined in the Accelerator’s
configuration file. The link will point to the original file in the job directory, and will be
silently replaced if it already exists.

107



DRAFT
A.5 Concurrency
By default, a job containing the analysis() function will be forked into slices parallel
processes, where slices is specified in the Accelerator’s configuration file. A standard
method like dataset_sort will sort in parallel in all slices for maximum performance, but
for large datasets and systems with little RAM, this could lead to running out of memory.
A solution to this problem is to limit the number of allowed parallel processes.

This could be done either in the build call, using the concurrency= parameter, or on
the command line as an option to the ax run command. In both cases, the limit could be
set to all methods, or it could be set to a specific method only.

If concurrency is set to a number, like this

concurrency=3

the number of parallel processes is limited to this number for all methods. Alternatively,
concurrency can be specified for a single method like this

concurrency="dataset_sort=3"
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Appendix B

Setup and Installation

This chapter covers how to install the Accelerator, how to configure it, and how to set up a
new project.
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B.1 Install the Accelerator

B.1.1 Using the pip command
The easiest way to install the Accelerator is by fetching it from the PyPi repository

pip install accelerator

Some prefer to install to a virtual environment and do something in line with the follow-
ing

python3 -m venv accvenv
source accvenv/bin/activate
pip install accelerator

This will install the Accelerator to the accvenv virtual environment. Now, use for example
the following command

ax --help

to check that the installation worked. The next step is to set up a project.

B.2 Set up a New Project
In order to run, the Accelerator needs to have these things in place

at least one workdir to store data in,

most likely a new method package directory to store new code in, and

a configuration file to set things up.

This is all taken care of by the init command.

ax init

For more information see section 9.2. A typical project setup will look like this

myproject/
accelerator.conf
dev/

methods.conf
a_method.py
build.py

where methods are stored in the dev directory.

B.3 Run the Tests
A rather extensive test suite is included in the Accerator installation. To run this, enable
the test package in the configuration file:

method packages:
...
accelerator.test_methods

start the server using

ax server

and in another shell start the test
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ax run tests

Since the tests include testing of different character encodings, you may end up with a

Exception: Failed to enable numeric_comma, please install at least one
of the following locales: da_DK nb_NO nn_NO sv_SE fi_FI en_ZA es_ES
es_MX fr_FR ru_RU de_DE nl_NL it_IT

On a Debian-based machine, locales can be configured using

dpkg-reconfigure locales

which has to be run with root privileges.

B.4 Server Configuration File
The configuration file specifies which method packages and workdirs that are available for
a project. A template configuration file can be generated using the init command as
described in section 9.2. Below is an example of a configuration file.

# The configuration is a collection of key value pairs.
#
# Values are specified as
# key: value
# or for several values
# key:
# value 1
# value 2
# ...
# (any leading whitespace is ok)
#
# Use ${VAR} or ${VAR=DEFAULT} to use environment variables.

slices: 23
workdirs:

test /zbd/workdirs/test
import ${HOME}/workdirs/import
live wdirs/live

# Target workdir defaults to the first workdir, but you can override it.
# target workdir: dev
# (this is where jobs without a workdir override are built)

method packages:
dev
accelerator.standard_methods

# accelerator.test_methods

urd: http://localhost:9000

result directory: ${HOME}/accelerator/results
input directory: /zbd/data/backblaze

# If you want to run methods on different python interpreters you can
# specify names for other interpreters here, and put that name after
# the method in methods.conf.
# You automatically get four names for the interpreter that started
# the server: DEFAULT, 3, 3.7 and 3.7.3 (adjusted to the actual
# version used). You can override these here, except DEFAULT.
# interpreters:
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# 2.7 /path/to/python2.7
# test /path/to/beta/python

The configuration file above specifies 23 slices and three workdirs, called test, import,
and live. The test workdir is specified using an absolute path, the import workdir is
specified relative to the user’s home directory using the shell environment variable $HOME,
and the live workdir is specified using a path relative to the location of the configuration
file itself.

The workdir that is specified first is the target workdir, where jobs are written to by
default. All other specified workdirs will by default only be used for reading. Any of the
workdirs specified could be written to, though, using the set_workdir= option to the build
command, as described on page 7.14.

Methods packages available for use are the standard_methods bundled with the Accel-
erator, and methods defined in the directory dev (if defined in dev/methods.conf).

name description

slices Number of slices used for the project.

workdirs A list of paths to workdir directories. At least one
workdir needs to be defined. All workdirs that are
used together must have the same number of slices.
It is possible to use shell environment variables such
as ${HOME} when specifying workdirs. Path starting
with a slash (/) are absolute paths, all other paths
are relative to the location of the configuration file
itself.
Unless overridden by the target workdir, the first
workdir in the list will be the default target workdir
that is used for all writing. Other specified workdirs
will only be read from, unless overrided by the build
call as described on page 7.14.

target workdir Name of the target workdir. If specified this over-
rides the first item in the workdirs list.

method packages A list of directories containing methods. These will
be the only directories where the Accelerator can
“see” methods. standard_methods is bundled with
the Accelerator and is commonly used.

urd If present, an URL to the Urd server.

result directory A common path that is available to all jobs. Use
the job.link_result()-function to create symbolic
links from files in job directories to this directory.
Just like workdirs, this path is either absolute or rel-
ative to the location of the configuration file.

input directory Default root path for csvimport. This is to avoid
rebuilds of imports if input files are moved to an-
other directory. (This typically happens when set-
ting up a similar system on another physical ma-
chine.) See section A.4.1 on how to get access
to input_directory from any method. Just like
workdirs, this path is either absolute or relative to
the location of the configuration file.
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interpreters Name and path to python executables. These are

used in methods.conf to specify specific Python ver-
sions (or virtual environments) for individual meth-
ods. If unspecified, methods will be executed using
the same binary that runs the Accelerator’s server
process.

It is possible to assign values in the configuration file using shell environment variables.
In the example above, workdirs are specified relative to ${HOME}, for example. In general,
the assignment is ${VAR=DEFAULT}.

B.5 Setting up a Standalone Urd-server
The main server program will start a local Urd server by default. This server is for local
use only. If the Urd server should be used to share information between users, a standalone
server needs to be set up.

To run a standalone Urd server, two things are needed

a directory where it can put its database, and

a passwd file to store user-password pairs in.

The passwd file is stored in the urd database directory. The default name of the database
directory is urd.db, so

mkdir urd.db
cd urd.db
<editor> passwd

where <editor> should be replaced by the editor of choice.

B.5.1 Starting Urd
Urd is running as a daemon. It is started like this

ax urd --port=<port> --path=<path>

B.5.2 The Urd Database
The Urd database has the following structure

database_root/
passwd
database/

user1/
list1
list2

user2/
list3

B.5.3 The passwd file
The passwd file stores write access authentication. The file format is straightforward, each
line is a user–password pair as follows

user:password

For example, if the file contains the following line

ab:secret

A build script run like this
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URD_AUTH=ab:secret ax run script

will have write access to all lists belonging to the user ab, such as for example the ab/test
and ab/import lists. But it can not write to lists belonging to other users, such as cd/import.
It can always read all lists, though.

B.6 Setting up a Standalone Board-server
The main server program will start a local board server by default. This behaviour can
be disabled in the Accelerator’s configuration file. In that case, to start the board server
manually, use the

ax board

command.
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Appendix C

Classes

The Accelerator is programed using an object oriented approach. This chapter outlines the
most common classes and its member functions.

115



DRAFT
C.1 The Job and CurrentJob Classes
The Job and CurrentJob classes are similar, but used in different contexts:

The Job class is used to represent and operate on existing jobs. An object of this
class is returned from job build() calls as well as when retreiving jobs from Urd or a
JobList object.

The CurrentJob class is an extension that provides mechanisms for operations per-
formed while a job is executing, such as saving files to the job’s jobdir.

The classes are derived from the str class, and objects of these classes decay to (unicode)
strings when pickled. The following attributes are available on both the Job and CurrentJob
classes:

name description

chain() Job chain
dataset() Return a named dataset from the job.
datasets List of datasets in job.
filename() Return absolute path to a file in a job.
files() Return list of files created by job.
json_load() Load a json file from the job’s directory.
link_result() Create a soft link from a file in a job’s directory to

result_directory.
load() Load a pickle file from the job’s directory.
method The job’s method. This can be overriden by name=

if job instance is output from Urd or a build() call.
number The job number as an int.
open() Similar to standard open, use to open files.
output() Return what the job printed to stdout and stderr.
params Return a dict corresponding to the file setup.json

for this job.
path The filesystem directory where the job is stored.
post Return a dict corresponding to the job’s post.json.
withfile() A JobWithFile with this job.
workdir The workdir name (the part before -number in the

jobid).

In addition, the CurrentJob class has these unique attributes:

name description

datasetwriter() Returns a DatasetWriter object. See documentation
for Dataset.DatasetWriter(), section C.6.

input_filename() Full filename of file in input_directory.
json_save() Store a json file in the current job directory.
open() Added extra temp argument.
open_input() Open a file in input_directory.
register_file() Record a file produced by this job.
save() Store a pickle file in the current job directory.

Detailed description of the functions, where neccessary, follows.
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C.1.1 Job.chain()

This works like dataset.chain(), but for chains of jobs.

name default description

length -1 Length of chain.
reverse False Reverse direction of chain.
stop_job None Chain to here.

C.1.2 Job.dataset()

name default description

name default

Get a dataset instance from a job.

C.1.3 Job.files()

name default description

pattern ” Return only files matching pattern

This method returns a list of all filenames corresponding to files created by the job using the
functions CurrentJob.open(), CurrentJob.save(), or CurrentJob.json_save(). The
list can be filtered using the pattern option. Filtering is based on Python’s fnmatch-
functionality.

C.1.4 Job.filename()

name default description

filename Mandatory Name of file in job directory.
sliceno None Set to current slice number if sliced, otherwise None.

Return the absolute (full path) filename to a file stored in the job. If the file is sliced, a
particular slice file can be retrieved using the sliceno parameter. Sliced files are described
in section 4.6.2.

C.1.5 Job.input_filename()

Return the full filename of a file stored in the input_directory.

name default description

filename Mandatory Name of file.

C.1.6 Job.open_input()

Open a file in the input_directory.
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name default description

filename Mandatory Name of file.
mode r Open file in this mode, see Python’s open()
encoding None Same as Python’s open()
errors None Same as Python’s open()

C.1.7 Job.json_load()

name default description

filename result.json Name of file.
sliceno None

Load a file from a job, in JSON format.

C.1.8 Job.load()

name default description

filename result.pickle Name of file.
sliceno None
encoding bytes

Load a file from a job in Python’s pickle format.

C.1.9 Job.open()

name default description

filename Mandatory Name of file.
mode r Open file in this mode, see Python’s open()
sliceno None Read or write sliced files.
encoding None Same as Python’s open()
errors None Same as Python’s open()
temp None Control file persistence. See text.

This is a wrapper around the standard open function with some extra features. Note that

– Job.open() can only read files, not write them, and therefore “r” flag must be set.

– CurrentJob.open() can both read and write.

– CurrentJob.open() must be used as a context manager, like this

with job.open(...) as fh:
....

– CurrentJob.open() can use the temp flag to modify the persistence of written files.

– CurrentJob.open() will register the file to the current job.

The temp argument is used to control the persistence of files written using .open(). This is
useful mainly for debug purposes, and explained in section C.1.17. Sliced files are described
in section C.1.16.
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C.1.10 Job.output()

name default description

what None Which functions to return output from.

Get everything a job has printed to stdout and stderr in a string variable. The parameter
what can be set to

None, which returns everything,

prepare, which returns everything from prepare,

analysis, which returns everything from analysis,

synthesis, which returns everything from synthesis, or

a number, which returns output from the corresponding analysis slice.

C.1.11 Job.register_file()

Register a file to the running job. This happens automatically when using Job.open(), but
if the file was produced in a way where that is not practical this can be used to manually
register the file.

name default description

filename Mandatory Name of file.

C.1.12 Job.withfile()

name default description

filename Mandatory Name of file.
sliced False Boolean indicating if the file is sliced or not.
extra None Any additional information to the job to be built.

The .withfile() is used to highlight a specific file in a job and feed it to another job
build(). The file could be sliced.

C.1.13 Currentjob.link_result()

name default description

filename Mandatory Name of file in job directory.
linkname None Name of link if set.

Use to create a soft link from a file in a job directory to the result_directory.
NOTE: This only works for Job instances, and not CurrentJob instances. This is for

reproducibility reasons. Links in result_directory cannot be recreated if created in a job,
since jobs can only be executed once.

C.1.14 CurrentJob.json_save()
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name default description

obj Mandatory
filename result.json
sliceno None
sort_keys True
temp None

For CurrentJob instances only. Save data into the current job’s directory in JSON format.
The temp argument is used to control the persistence of files written using .json_save().
This is useful mainly for debug purposes, and explained in section C.1.17.

C.1.15 CurrentJob.save()

name default description

obj Mandatory
filename result.pickle
sliceno None
temp None

For CurrentJob instances only. Save data into the current job’s directory in Python’s pickle
format. The temp argument is used to control the persistence of files written using .save().
This is useful mainly for debug purposes, and explained in section C.1.17.

C.1.16 Sliced Files
A sliced file is actually a set of files used to store data independently in each analysis()
process using a common name. The functions that operate on files, such as for example
.open() and .load(), can switch to sliced files using the sliceno parameter. From a user’s
perspective, they always appear to work on single files. For example

def analysis(sliceno, job):
data = ...
job.save(data, "mydata", sliceno=sliceno, temp=False)

will create a set of files mydata.%d, where %d is replaced by the slice number. In this way,
data can be passed “in parallel” between different jobs.

C.1.17 File Persistence
The temp argument controls persistence of files stored using .open(), .save(), or .json_save().
By default it is being set to False, which implies that the stored file is not temporary. But
setting it to True, like in the following

job.save(data, filename, temp=True)

will cause the stored file to be deleted upon job completion. The functionality can be
combined with the debug mode, see below.

temp “normal” mode debug mode
False stored stored
True stored and removed stored

Debug mode is active if the Accelerator server is started with the –-debug flag.

120



DRAFT
C.2 The JobWithFile Class
The JobWithFile class is used to create a job input parameter from a file stored in a job.

name description

filename() Return filename.
load() Load file contents. Takes an encoding=-parameter.
json_load() Load JSON file contents.
open() Returns a filehandle to the open file. Takes

encoding=- and errors=-parameters.

All above functions take the argument sliceno, which default is set to None, indicating
that it is actually a single file on disk. If sliceno is set, it is assumed that the file is sliced,
see section C.1.16, and the function will look up that slice of the file only.
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C.3 The JobList Class
Objects of the JobList class are returned by member functions to the Urd class. They are
used to group sessions of jobs together.

name description

find() Return a new JobList with only jobs with that
method or name in it.

get() Return the latest Job with that method or name.
[<method>] Same as .get but error if no job with that method

or name is in the list.
as_tuples The JobList represented as (method, jid) tuples.
pretty Return a prettified string version of the JobList.
exectime Execution times in total as well as per method.
print_exectimes() Print execution time information to stdout.

Detailed description of the functions, where neccessary, follows.

C.3.1 JobList.find()

name default description

method Mandatory Method or name to find.

Return a new Joblist will all jobs in the current JobList matching the method argument.
The matching part is either the unique name of the method’s source code, or the name
optionally given at build time using the name= argument.

C.3.2 JobList.get()

name default description

method Mandatory Method or name to find.
default None Return the latest matching job.

Return the latest job that matches the method argument. The matching part is either the
unique name of the method’s source code, or the name optionally given at build time using
the name= argument. If no matches are found, it will return the default argument.

C.3.3 JobList.print_exectimes()

name default description

verbose True In addition to total time, print execution time for
each method in list.

Print total execution time for the Joblist, and, conditionally, execution time for each job
in the list, to stdout.
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C.4 The Dataset Class
The Dataset class is used to operate on small or large datasets stored on disk. It decays to
a (unicode) string when pickled.

name description

columns A dict from column to properties, such as type, min,
and max values.

previous The dataset’s previous dataset, if it exists, None oth-
erwise.

parent The dataset’s parent dataset, if it exists, None oth-
erwise.

filename The dataset’s filename, if it exists. (csvimport sets
this.)

hashlabel Column used for hash partitioning, or None.
caption The dataset’s caption.
lines A list with number of lines per slice.
shape A tuple containing number of columns and number

of lines in dataset.
link_to_here() Used to associate a subjob’s dataset with the current

job, see section 4.9.
merge() Merge this dataset with another dataset, see sec-

tion C.4.2.
chain() A DatasetChain object, see section C.5
iterate_chain() Iterator over chains, see chapter 6.
iterate() Iterator over dataset see chapter 6.
iterate_list() Iterator over a list of datasets, see chapter 6.

Detailed description of the functions, where neccessary, follows.

C.4.1 Dataset.link_to_here()

name default description

name default The new name of the dataset.
column_filter None Iterable of columns to include, or None to get all.
override_previous _no_overrideSet this to the new previous.

Use this to expose a subjob as a dataset in your job, like in this example:

def synthesis():
job = build('ex')
job.dataset().link_to_here(name='new')

The current job will now appear to have a dataset named new, that is actually a link to the
subjob’s default dataset. It is possible to filter which columns should be visible in the link
using column_filter. For chaining purposes, it is possible for the link to expose a parent
dataset of choice, set using the override_previous parameter.

C.4.2 Dataset.merge()

name default description
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other Mandatory Merge with this dataset.
name “default” Name of new dataset
previous None The new dataset’s previous dataset.
allow_unrelated False Set this if the datasets do not share a common an-

cestor.

Merge this and other dataset. Columns from the other dataset take priority. If datasets
do not have a common ancestor you get an error unless allow_unrelated is set. The new
dataset always has the previous specified here (even if None). Returns the new dataset.

C.4.3 Dataset.chain()

name default description

length -1 Number of datasets in chain. The default value of
-1 will include all datasets in chain.

reverse False Reverse order of chain.
stop_ds None If set, chain will start at the dataset after stop_ds.

This function will return a DatasetChain object, see section C.5.
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C.5 The DatasetChain Class
These are lists of datasets returned from Dataset.chain. They exist to provide some conve-
nience methods on chains.

name description

min() Min value for a specified column over the whole
chain.

max() Max value for a specified column over the whole
chain.

lines() Number of rows in this chain, optionally for a specific
slice.

column_counts() The number of datasets each column appears in.
column_count() Number of datasets in this chain that contain a spec-

ified column.
with_column() Return a new chain without any datasets that don’t

contain a specified column.
none_support() Return True if any dataset in the chain has None-

support for this column.
iterate(...) Same arguments as Dataset.iterate(). Will iter-

ate over the whole chain.

Detailed description of the functions, where neccessary, follows.

C.5.1 DatasetChain.min(), DatasetChain.max()

name default description

column Mandatory Min/max value of column, see text.

Minimum or maximum value for column over the whole chain. Will be None if no dataset
in the chain contains column, if all datasets are empty or if column has a type without
min/max tracking.

C.5.2 DatasetChain.lines()

name default description

sliceno None If set, return number of lines in speficied slice.

Number of rows in this chain, optionally for a specific slice.

C.5.3 DatasetChain.column_counts()

Return a Python Counter,{colname: occurances}, holding the number of datasets each
column appears in. Takes no options.

C.5.4 DatasetChain.column_count()

name default description

column Mandatory A column name.

Number of datasets in this chain that contain a specified column.
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C.5.5 DatasetChain.with_column()

name default description

column Mandatory A column name.

Return a new DatasetChain with all datasets in this chain containing a speficied column.
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C.6 The DatasetWriter Class
The DatasetWriter class is used to create datasets. Datasets could be stand-alone, part of
a chain, or an extension (new columns) to an existing dataset.

The class has a number of member functions, described below, that may be used for
dataset creation. Alternatively, the new dataset could be set up using the DatasetWriter
constructor. The constructor approach is currently only documented in the source code, see
dataset.py.

name description

add() Add a new column to the dataset under creation.
hashcheck() Check if value belongs in current slice.
set_slice() Set which slice that will receive the next write.
enable_hash_discard() Make the write functions silently discard data that

does not hash to the current slice.
get_split_write() Get a writer object, see section 5.9.2.
get_split_write_list() Get a writer object, see section 5.9.2.
get_split_write_dict() Get a writer object, see section 5.9.2.
discard() Discard the dataset under creation.
finish() Call this if dataset is to be used before creating job

finishes, e.g. if the dataset under creation is input to
a subjob.

Detailed description of the functions, where neccessary, follows.

C.6.1 DatasetWriter.add()

name default description

colname Mandatory Name of new column.
coltype Mandatory Type of new column.
none_support False Set to True to allow storing Nones.

Add a new column to a dataset in creation. This example will create an age column of type
number, where the values could also be None.

dw.add('age', 'number', none_support=True)

All dataset types are described in chapter 5.

C.6.2 DatasetWriter.hashcheck()

name default description

value Mandatory Some data/

Check if a value belongs to the current slice. Return True if value belongs to the current
slice, False otherwise.

C.6.3 DatasetWriter.set_slice()

name default description

sliceno Mandatory Slice number to use for writing.
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Specify which slice that will receive the next write(s). Use this if writing data in prepare()
or synthesis().

C.6.4 DatasetWriter.enable_hash_discard()

Takes no options. Set this in each slice or after each set_slice() to make the writer discard
values that do not belong to the current slice.
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C.7 The Urd Class

name description

get() Get an Urd item from a specified list and timetamp.
latest() Get the latest Urd item for a specified list.
first() Get the first Urd item for a specified list.
peek() Get an Urd item from a specified list and timetamp

without recording.
peek_latest() Get the latest Urd item for a specified list without

recording.
peek_first() Get the first Urd item for a specified list without

recording.
since() Get all timestamps later than a specified timestamp

for a specified list.
list() List all Urd lists
begin() Start a new Urd session.
abort() Abort a running Urd session.
finish() Finish a running Urd session and store its contents.
truncate() Discard all Urd items later than a specified times-

tamp for a specified list.
set_workdir() Set the target workdir.
build() Build a job.
build_chained() Build a job with chaining.
warn() Add a warning message to be displayed at the end of

the build.

Detailed description of the functions, where neccessary, follows.

C.7.1 Urd.get()

name default description

path Mandatory
timestamp Mandatory

Get an Urd item with specified list and timestamp. The operation is recorded in the current
Urd session.

C.7.2 Urd.latest()

name default description

path Mandatory

Get the latest job in a specified Urd list. The operation is recorded in the current Urd
session.

C.7.3 Urd.first()

name default description

path Mandatory

129



DRAFT
Get the first job in a specified Urd list. The operation is recorded in the current Urd session.

C.7.4 Urd.peek()

name default description

path Mandatory
timestamp Mandatory

Same as .get(), but without recording the dependency.

C.7.5 Urd.peek_latest()

name default description

path Mandatory

Same as .latest(), but without recording the dependency.

C.7.6 Urd.peek_first()

name default description

path Mandatory

Same as .first(), but without recording the dependency.

C.7.7 Urd.since()

name default description

path Mandatory
timestamp Mandatory

Return a list of all timestamps more recent than the input timestamp for a specified Urd
list.

C.7.8 Urd.list()

Return a list of all available Urd lists.

C.7.9 Urd.begin()

name default description

path Mandatory
timestamp Mandatory
caption None
update False

Start a new Urd session.

C.7.10 Urd.abort()

Abort the current Urd session, discard its contents.

130



DRAFT
C.7.11 Urd.finish()

name default description

path Mandatory
timestamp Mandatory
caption None

Finish the current Urd session and store it in the Urd database.

C.7.12 Urd.truncate()

name default description

path Mandatory
timestamp Mandatory

Discard everything later than timestamp for the specified Urd list.

C.7.13 Urd.set_workdir()

name default description

workdir Mandatory

Set target workdir. It can be set to any workdir present in the Accelerator’s configuration
file.

C.7.14 Urd.build()

name default description

method Mandatory Method to build.
options {} Input options.
datasets {} Input datasets.
jobs {} Input jobs.
name None Record job using this name instead of method name.
caption None Optional caption
workdir None Store job in this workdir.

Build a job. If an Urd session is running, the job and its dependencies will be recorded.

C.7.15 Urd.build_chained()

Build a chained job. Same options as .build(). See chapter 5 for more information.

C.7.16 Urd.warn()

Print a string to stdout when the build script ends with no errors.

name default description

line Mandatory Some string
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